• Title/Summary/Keyword: proof education

Search Result 290, Processing Time 0.025 seconds

COLORED PERMUTATIONS WITH NO MONOCHROMATIC CYCLES

  • Kim, Dongsu;Kim, Jang Soo;Seo, Seunghyun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1149-1161
    • /
    • 2017
  • An ($n_1,\;n_2,\;{\ldots},\;n_k$)-colored permutation is a permutation of $n_1+n_2+{\cdots}+n_k$ in which $1,\;2,\;{\ldots},\;n_1$ have color 1, and $n_1+1,\;n_1+2,\;{\ldots},\;n_1+n_2$ have color 2, and so on. We give a bijective proof of Steinhardt's result: the number of colored permutations with no monochromatic cycles is equal to the number of permutations with no fixed points after reordering the first $n_1$ elements, the next $n_2$ element, and so on, in ascending order. We then find the generating function for colored permutations with no monochromatic cycles. As an application we give a new proof of the well known generating function for colored permutations with no fixed colors, also known as multi-derangements.

ON THE NORM OF THE OPERATOR aI + bH ON Lp(ℝ)

  • Ding, Yong;Grafakos, Loukas;Zhu, Kai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1209-1219
    • /
    • 2018
  • We provide a direct proof of the following theorem of Kalton, Hollenbeck, and Verbitsky [7]: let H be the Hilbert transform and let a, b be real constants. Then for 1 < p < ${\infty}$ the norm of the operator aI + bH from $L^p(\mathbb{R})$ to $L^p(\mathbb{R})$ is equal to $$\({\max_{x{\in}{\mathbb{R}}}}{\frac{{\mid}ax-b+(bx+a){\tan}{\frac{\pi}{2p}}{\mid}^p+{\mid}ax-b-(bx+a){\tan}{\frac{\pi}{2p}}{\mid}^p}{{\mid}x+{\tan}{\frac{\pi}{2p}}{\mid}^p+{\mid}x-{\tan}{\frac{\pi}{2p}}{\mid}^p}}\)^{\frac{1}{p}}$$. Our proof avoids passing through the analogous result for the conjugate function on the circle, as in [7], and is given directly on the line. We also provide new approximate extremals for aI + bH in the case p > 2.

AN ELEMENTARY PROOF OF THE EFFECT OF 3-MOVE ON THE JONES POLYNOMIAL

  • Cho, Seobum;Kim, Soojeong
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.95-113
    • /
    • 2018
  • A mathematical knot is an embedded circle in ${\mathbb{R}}^3$. A fundamental problem in knot theory is classifying knots up to its numbers of crossing points. Knots are often distinguished by using a knot invariant, a quantity which is the same for equivalent knots. Knot polynomials are one of well known knot invariants. In 2006, J. Przytycki showed the effects of a n - move (a local change in a knot diagram) on several knot polynomials. In this paper, the authors review about knot polynomials, especially Jones polynomial, and give an alternative proof to a part of the Przytychi's result for the case n = 3 on the Jones polynomial.

A new proof of standard completeness for the uninorm logic UL (Uninorm 논리 UL을 위한 새로운 표준 완전성 증명)

  • Yang, Eun-Suk
    • Korean Journal of Logic
    • /
    • v.13 no.1
    • /
    • pp.1-20
    • /
    • 2010
  • This paper investigates a new proof of standard completeness (i.e. completeness on the real unit interval [0, 1]) for the uninorm (based) logic UL introduced by Metcalfe and Montagna in [15]. More exactly, standard completeness is established for UL by using nuclear completions method introduced in [8, 9].

  • PDF

A reconstruction of the G$\ddot{o}$del's proof of the consistency of GCH and AC with the axioms of Zermelo-Fraenkel set theory

  • Choi, Chang-Soon
    • Journal for History of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.59-76
    • /
    • 2011
  • Starting from a collection V as a model which satisfies the axioms of NBG, we call the elements of V as sets and the subcollections of V as classes. We reconstruct the G$\ddot{o}$del's proof of the consistency of GCH and AC with the axioms of Zermelo-Fraenkel set theory by using Mostowski-Shepherdson mapping theorem, reflection principles in Tarski-Vaught theorem and Montague-Levy theorem and the fact that NBG is a conservative extension of ZF.

Mathematical Connections Between Classical Euclidean Geometry and Vector Geometry from the Viewpoint of Teacher's Subject-Matter Knowledge (교과지식으로서의 유클리드 기하와 벡터기하의 연결성)

  • Lee, Ji-Hyun;Hong, Gap-Ju
    • School Mathematics
    • /
    • v.10 no.4
    • /
    • pp.573-581
    • /
    • 2008
  • School geometry takes various approaches such as deductive, analytic, and vector methods. Especially, the mathematical connections between these methods are closely related to the mathematical connections between geometry and algebra. This article analysed the geometric consequences of vector algebra from the viewpoint of teacher's subject-matter knowledge and investigated the connections between the geometric proof and the algebraic proof with vector and inner product.

  • PDF

MONOTONICITY AND LOGARITHMIC CONVEXITY OF THREE FUNCTIONS INVOLVING EXPONENTIAL FUNCTION

  • Guo, Bai-Ni;Liu, Ai-Qi;Qi, Feng
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.387-392
    • /
    • 2008
  • In this note, an alternative proof and extensions are provided for the following conclusions in [6, Theorem 1 and Theorem 3]: The functions $\frac1{x^2}-\frac{e^{-x}}{(1-e^{-x})^2}\;and\;\frac1{t}-\frac1{e^t-1}$ are decreasing in (0, ${\infty}$) and the function $\frac{t}{e^{at}-e^{(a-1)t}}$ for a $a{\in}\mathbb{R}\;and\;t\;{\in}\;(0,\;{\infty})$ is logarithmically concave.

  • PDF

Practical Co-Existence Proof Protocol (현실적인 공존 증명 프로토콜)

  • Eun, Hasoo;Lim, Jihwan;Oh, Heekuck;Kim, Sangjin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1331-1334
    • /
    • 2010
  • 공존 증명(Co-Existence Proof, CEP) 프로토콜은 둘 이상의 태그들이 공존했음을 증명하는 정보를 생성하는 것으로, 2004 년 A. Jules 가 제안한 이래 많은 연구가 진행되어 왔다. 하지만 대부분의 논문이 재전송 공격 방지와 익명화에 초점이 맞추어져 있다. 본 논문에서는 이러한 공존 증명 프로토콜을 인증 프로토콜, 검색프로토콜과 차별화 시킴과 동시에 현실적으로 공존 증명 프로토콜을 사용하고 연산량을 최소화 시킬 수 있는 환경에 대해 논한다.

Four proofs of the Cayley formula (케일리 공식의 네 가지 증명)

  • Seo, Seung-Hyun;Kwon, Seok-Il;Hong, Jin-Kon
    • Journal for History of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.127-142
    • /
    • 2008
  • In this paper, we introduce four different approaches of proving Cayley formula, which counts the number of trees(acyclic connected simple graphs). The first proof was done by Cayley using recursive formulas. On the other hands the core idea of the other three proofs is the bijective method-find an one to one correspondence between the set of trees and a suitable family of combinatorial objects. Each of the three bijection gives its own generalization of Cayley formula. In particular, the last proof, done by Seo and Shin, has an application to computer science(theoretical computation), which is a typical example that pure mathematics supply powerful tools to other research fields.

  • PDF

The Relationship between Pre-service Teachers' Geometric Reasoning and their van Hiele Levels in a Geometer's Sketchpad Environment

  • LEE, Mi Yeon
    • Research in Mathematical Education
    • /
    • v.19 no.4
    • /
    • pp.229-245
    • /
    • 2015
  • In this study, I investigated how pre-service teachers (PSTs) proved three geometric problems by using Geometer's SketchPad (GSP) software. Based on observations in class and results from a test of geometric reasoning, eight PSTs were sorted into four of the five van Hiele levels of geometric reasoning, which were then used to predict the PSTs' levels of reasoning on three tasks involving proofs using GSP. Findings suggested that the ways the PSTs justified their geometric reasoning across the three questions demonstrated their different uses of GSP depending on their van Hiele levels. These findings also led to the insight that the notion of "proof" had somewhat different meanings for students at different van Hiele levels of thought. Implications for the effective integration of technology into pre-service teacher education programs are discussed.