• 제목/요약/키워드: production forecasting

검색결과 223건 처리시간 0.026초

사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크 (A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network)

  • 황유섭
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.43-57
    • /
    • 2012
  • 제조업에 있어서 판매 후 서비스 건수와 내용 등은 향후 서비스 제공을 위한 자원배분의 효율성 증진과 서비스 품질 향상을 위해서도 매우 중요한 정보이다. 따라서 기업들은 향후 발생하는 판매 후 서비스에 대해 정확히 예측하고 그에 따라 적절히 대처하는 능력을 확보할 필요성이 제조업을 중심으로 증가하고 있다. 그러나 실제로 이들 기업들이 활용하고 있는 서비스 수요예측 방법들은 전통적인 통계적인 예측기법이거나, 시뮬레이션을 기반한 기법들이다. 예를 들면, 전통적인 통계적인 예측기법으로는 회귀분석(regression analysis)의 경우, 다양한 제품모델에 대한 판매 후 서비스 발생 패턴이 선형적인 관계가 매우 적음에도 불구하고 선형으로 가정하여 추정한다는 점과 적정한 회귀식을 가정하여야 되며, 이러한 가정이 실제 경영환경에서는 매우 어렵다는 점 등이 기존의 예측기법들의 한계점으로 지적되고 있다. 본 연구에서는 디지털 TV 모델을 생산 판매 하는 A사의 사례연구를 통하여 최근 인공지능연구에서 각광을 받고 있는 사례기반추론(case-based reasoning; CBR) 기법을 활용한 서비스 수요예측 프레임워크를 제안하고자 한다. 또한, 사례기반추론에서 핵심적인 역할 중 하나인 유사 사례추출 방법에 있어서 가장 일반적인 nearest-neighbor 방법 이외의 유사 사례추출 방법을 제안하고자 한다. 특히, 본 연구에서 제안하는 유사 사례추출 방법은 인공신경망(artificial neural network)을 활용한 자기조직화지도(Self-Organizing Maps : SOM) 군집화 기법을 활용한 유사 사례추출 방식으로 이를 활용한 서비스 수요예측 프레임워크에 구현하고, 실제 기업의 판매 후 서비스 데이터를 활용하여 본 연구에서 제안하는 서비스 수요 예측 프레임워크의 유효성을 실증적으로 검증하고자 한다.

INBOUND TOURISM IN UZBEKISTAN: DEMAND ANALYSIS AND FORECASTING

  • Kim, Pyongil;Shirin, Maxamediva;Nargiza, Juraeva
    • Asia Pacific Journal of Business Review
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2020
  • Tourism development stimulates job creation and the development of other sectors of the economy. More than 30 sectors of the economy are connected to tourism. It distributes resources between sectors and stimulates of development of such sectors like transport, communications, services, trade, construction, and the production of consumer goods. All these increase the importance of tourism as well as forecasting it by analyzing the demand. This study is a review on inbound tourism of Uzbekistan. The study will examine regression analysis as an effective tool that plays an important role as well as in the field of tourism demand analysis. In this study, firstly the estimating tourism demand is explained, secondly, the regression analysis is examined as an estimating tool of tourism demand. The paper includes a country study dedicated to the Tourism market of Uzbekistan. Nevertheless, the forecast on the inbound tourism of Uzbekistan was developed by using some statistical data.

신제품 수요예측 방법론 연구 (A Study on the New Product Forecasting Methodology)

  • 임종인;오형식
    • 대한산업공학회지
    • /
    • 제18권2호
    • /
    • pp.51-63
    • /
    • 1992
  • It is commonly accepted that the demand forecasting data play a vital role in deciding strategic variables such as the optimal market entry time, the price structure and the production capacity etc. In case of the new product, however, it is hard to apply the well known regression-type methodologies. In this study, we survey the characteristics of various types of new product demand forecasting(NPDF) methodologies which are useful in case the historical data are not available. Further, we explore the possibility of incorporating the NPDF methodologies and develope the unified infra-structure of the NPDF methodologies. Finally we propose an integrated prototype of the NPDF model.

  • PDF

경영정책지원 시스템의 실행방안

  • 김연민
    • 경영과학
    • /
    • 제1권
    • /
    • pp.35-45
    • /
    • 1984
  • This paper deals with the case study of the establishment of decision supporting system in shipbuilding industory. Facts or information of shipbuilding, sales, finance, production strategic planning in shipbuilding industry are considered. General transportation model for shipyard production schedule is formulated, and shipbuilding demand forecasting scheme is also introduced. This paper shows the several methods of DSS in shipbuilding industry. But production schedule strategic planning system by OR technique is emphasized. For the realization of DSS in shipbuilding industry, another efforts (data gathering and programming etc.) should be given on the basis of these methods.

  • PDF

회귀알고리즘을 이용한 자원예측 및 위험관리를 위한 의사결정 시스템 (Decision-making system for the resource forecasting and risk management using regression algorithms)

  • 한형철;정재훈;김신령;김영곤
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.311-319
    • /
    • 2015
  • 본 논문에서는 산업공장 내의 생산 효율을 높이기 위하여 제조공정 자원을 예측하고 위험 관리를 효율적으로 이행하는 자원예측 및 위험관리를 위한 의사결정 시스템을 제안하였다. 각 공정에서 발생되는 다양한 정보들을 효율적으로 관리하는 세부 공정별 시나리오 생성이 어렵고, 동일한 공정 내에서도 다양한 제품의 생산하기 위해 제조 설비의 조건 변경이 빈번하다. 제품의 생산 주기 또한 일정하지 않아 연속되지 않은 데이터가 발생하여 소량의 데이터로 변동을 확인해야 하는 문제점이 있다. 이러한 문제점을 해결하기 위해서는 제조공정의 데이터 일원화, 공정 자원 예측, 위험 예측, 공정 현황 모니터링을 통하여 문제 발생시 즉각 조치가 가능하여야 한다. 본 논문에서는 설계도면 변경 범위, 자원 예측, 공정 완료 예정일을 회귀알고리즘을 이용하여 수식을 도출하였으며, 분류 트리 기법, 경계값 분석을 통하여 3단계로 의사결정 시스템을 제안하였다.

A Hybrid Method to Improve Forecasting Accuracy Utilizing Genetic Algorithm: An Application to the Data of Processed Cooked Rice

  • Takeyasu, Hiromasa;Higuchi, Yuki;Takeyasu, Kazuhiro
    • Industrial Engineering and Management Systems
    • /
    • 제12권3호
    • /
    • pp.244-253
    • /
    • 2013
  • In industries, shipping is an important issue in improving the forecasting accuracy of sales. This paper introduces a hybrid method and plural methods are compared. Focusing the equation of exponential smoothing method (ESM) that is equivalent to (1, 1) order autoregressive-moving-average (ARMA) model equation, a new method of estimating the smoothing constant in ESM had been proposed previously by us which satisfies minimum variance of forecasting error. Generally, the smoothing constant is selected arbitrarily. However, this paper utilizes the above stated theoretical solution. Firstly, we make estimation of ARMA model parameter and then estimate the smoothing constant. Thus, theoretical solution is derived in a simple way and it may be utilized in various fields. Furthermore, combining the trend removing method with this method, we aim to improve forecasting accuracy. This method is executed in the following method. Trend removing by the combination of linear and 2nd order nonlinear function and 3rd order nonlinear function is executed to the original production data of two kinds of bread. Genetic algorithm is utilized to search the optimal weight for the weighting parameters of linear and nonlinear function. For comparison, the monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non-monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful for the time series that has various trend characteristics and has rather strong seasonal trend. The effectiveness of this method should be examined in various cases.

생산(生産) - 재고관리(在庫管理) 시스템의 동적거동(動的擧動)에 관한 연구(硏究) (A Study of Dynamic Behavior of Production - Inventory Control System)

  • 김만식;박용선
    • 대한산업공학회지
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 1979
  • This paper discusses an application of discrete variable Servo Theory to the analysis of the effectiveness of production-inventory control system which uses exponential smoothing as a specific forecasting technique by establishing a new model which consists of such three departments as production planning, production, and inventory. The objective of the new production-inventory model is to keep the production to the optimal level of minimum production cost in production planning problem for obtaining, the stability of inventory subject to demand variation. On this basis, the dynamic characteristic of the system with the change of the parameters is clarified by the numerical analysis. The results of the numerical analysis show the effect that is obtained by the simultaneous stability of production and inventory as soon as possible.

  • PDF

생산 자동화 및 의사결정지원시스템 지원을 위한 전사적 생산데이터 프레임웍 개발 (Enterprise-wide Production Data Model for Decision Support System and Production Automation)

  • 장재덕;홍순석;김철영;배성민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.615-616
    • /
    • 2006
  • Many manufacturing companies manage their production-related data for quality management and production management. Nevertheless, production related-data should be closely related to each other Stored data is mainly used to monitor their process and products' error. In this paper, we provide an enterprise-wide production data model for decision support system and product automation. Process data, quality-related data, and test data are integrated to identify the process inter or intra dependency, the yield forecasting, and the trend of process status. In addition, it helps the manufacturing decision support system to decide critical manufacturing problems.

  • PDF

신경회로망을 이용한 생산량 예측에 관한 연구 (Production Volume Forecast using Neural Networks)

  • 이오걸;송호신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.62-64
    • /
    • 2001
  • This paper presents a forecasting method for production volume of each model manufacture d goods by using Back-Propagation technique of Neural Networks. As the learning constant and the momentum constant are respectively 0.65 and 0.94, the teaming number is the least, and the forecating accuracy is the highest. When the learning process is more than 1,000 times, the accurate forecating was possible regardless of kind of product.

  • PDF

신경회로망에 의한 제품별 생산량 예측에 관한 연구 (Production Volume Forecating of each Manufactured Goods by Neural Networks)

  • 이오걸;이준탁
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.298-300
    • /
    • 2001
  • This paper presents a forecasting method for production volume of each model manufactured goods by using Back-Propagation technique of Neural Networks. As the learning constant and the momentum constant are respectively 0.65 and 0.94, the learning number is the least, and the forecating accuracy is the highest. When the learning process is more than 1,000 times, the accurate forecating was possible regardless of kind of product.

  • PDF