• Title/Summary/Keyword: process deviation

Search Result 1,028, Processing Time 0.026 seconds

Stress-Based Springback Reduction of an AHSS Front Side Member (고강도강 프런트 사이드멤버의 음력분포 최적화를 통한 스프링백 저감)

  • Song, J.H.;Kim, S.H.;Huh, H.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.61-67
    • /
    • 2006
  • Optimization is carried out to determine process parameters which reduce the amount of springback and improve shape accuracy of a deep drawn product in sheet metal forming process. The study uses the amount of stress deviation along the thickness direction in the deep drawn product as an indicator of springback instead of springback simulation. The scheme incorporates with an explicit elasto-plastic finite element method for calculation of the final shape and the stress deviation. The optimization method adopts the response surface method in order to seek for the optimum condition of the draw-bead force. The present scheme is applied to the design of draw-bead force in a front side member formed with advanced high strength steel (AHSS) sheets of DP60. Results show that design of process parameter is well performed to decrease the stress deviation through the thickness and to reduce the amount of springback. The present analysis provides a guideline in a design stage for controlling the springback based on the finite element simulation of the complicated parts.

  • PDF

A Study on Verification of Shoe Last Grading System Based on Foot Measuring Data (발계측 자료에 기초한 신골 할출 시스템의 검증에 관한 연구)

  • Park, Hae-Soo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.71-77
    • /
    • 2007
  • Shoe's size and shape are determined by the last that takes shape of foot because last is the mold of shoe in development and manufacturing process. Then adaptation between foot and shoe is dependent on the last. In mass shoe production, model size is developed in the first place, other sized lasts are made through the grading process based on model size. The most important factor in grading system is grading deviation that must be same amount induced from foot measuring database. At present, most of the last manufacturing companies in korea using 260mm as a standard foot model size. When length grading deviation is 5mm, the ball girth grading deviation is 3.7mm and the ball width grading deviation is 1.2mm. I verified existing grading system by comparing grading results with foot measuring data. Also, I proposed reasonable grading deviation and application method of grading system. From the analysis of foot measuring database, reasonable grading deviations are 1.22mm in ball width and 0.84mm in ankle height in case of length grading deviation is 5mm. I confirmed that the current grading system is very accurate. When we grade last from 230mm to 290mm by current grading system based on model size 260mm, there is grading error over 1mm in the front outside area of foot. This error level of 1mm is no problem in normal walking shoe's last, but it induces adaptation problems in sports and special purposed shoe's last. Therefore using of three standard model size is recommended in grading men's last for reducing grading deviation error under the level of 1mm. It is specifically described as 235mm in 225-245mm, 260mm in 250-270mm, 285mm in 275-295mm. According to the above recommended grading system, it is enough to measure only three foot sizes in case of foot measuring project for men's last development.

Interpretation and Generalization by Neuroscience and Material Mechanics on Deviation in Temporomandibular Joint Balancing Medicine (턱관절균형의학에서 편차발생현상의 신경과학 및 재료역학적 해석과 일반화)

  • Gyoo-yong Chi
    • Journal of TMJ Balancing Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Objectives: For the deviation phenomenon occurring during the treatment process in temporo-mandibular balancing medicine (TBM), hypotheses were established regarding the cause and mechanism of formation from the perspective of neuro-science and material mechanics, and a verification method was proposed. Methods: The deviation phenomenon was theoretically analyzed based on the structure theories of material mechanics of the joint and the neurological pain mechanism. Results: Deviation occurs due to temporary yield by the accumulation of heterogeneous stress in the temporo-mandibular joint and the affected joint. Because the joint structures are corresponding with material mechanics showing compressive and tensile properties. The size of the deviation is expressed in terms of strain. The occlusal surface of the teeth is level with the axial joint. Since the magnitude of the deviation has a proportional relationship with the degree of abnormality of the temporo-mandibular joint, the magnitude of the deviation calculated by the balance measurement can be replaced by the strain. The major variables involved in the occurrence of deviations are the strength of joint structures and neurological conditions. Therefore plastic deformation and adaptation occur as a long-term depression of neural circuits is strengthened in different ways at different locations each time in various clinical situations. This is the reason why the sequence of the restoration process while correcting deviations is following reverse order of the accumulation in many layers in the muscular nervous system. Conclusions: From the above results, it can be inferred that the occurrence and correction of the deviations are corresponding with the plastic deformation and neuro-plasticity.

A study for the real-time acquirement of cutting process control limit based on geometrical relations (기하학적 관계를 바탕으로 한 가공공정 관리한계의 실시간 획득에 관한 연구)

  • Hong, Jun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.82-91
    • /
    • 1995
  • The purpose of this research is to develop a new real-time process control system. In this paper, a theoretical method for acquiring the control limit of cutting process(cutting surface) according to the required value(geometric tolerance) based on geometrical relations was propsed. In particular, the three following points are amphasized. Firstly, the process control was based on the cutting process, and the control limit was determined from the analysis of geometrical relations. Secondly, AMGD(Actual Measured Geometrical Deviation) was used as a new substitute value in process analysis. Thirdly, fuzzy reasoning was introduced to get the control limit flexibility according to the variations in the required value and general consideration of each measurememnt items.

  • PDF

DOE approach in the FE Simulation of Liner Forging Process (실험계획법을 적용한 라이너 단조 공정의 유한요소해석)

  • Kim, Y.G.;Kang, G.P.;Seo, S.J.;Lee, J.K.;Yoon, T.S.;Lee, K.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.356-362
    • /
    • 2018
  • A liner is a crucial component that directly affects the penetration performance of the shaped charge warhead. If the material of the liner has fine grain size and high strength, then the penetration performance can be further improved. There have been attempts to use a preform obtained by a severe plastic deformation (SPD) process. In this study, the process of minimizing the strain deviation to maintain the characteristics of material obtained by the severe plastic deformation process was investigated. The FE analysis of liner forging process was performed using the design of experiments (DOE), to optimize various shape parameters of the forming process such as shape of preform and forging die. As a result, the combination of design variables with the minimum effective strain deviation in the liner forging process were obtained.

LIMIT BEHAVIORS FOR THE INCREMENTS OF A d-DIMENSIONAL MULTI-PARAMETER GAUSSIAN PROCESS

  • CHOI YONG-KAB;LIN ZRENGYAN;SUNG HWA-SANG;HWANG KYO-SHIN;MOON HEE-JIN
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1265-1278
    • /
    • 2005
  • In this paper, we establish limit theorems containing both the moduli of continuity and the large incremental results for finite dimensional Gaussian processes with N parameters, via estimating upper bounds of large deviation probabilities on suprema of the Gaussian processes.

Producer-Consumer Tolerances Considering Process Mean Deviation (공정평균 편차를 고려한 허용차 결정)

  • 송서일;박영호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.24
    • /
    • pp.31-41
    • /
    • 1991
  • The producer's to tolerance concept (in contrast to the consumer's tolerence) fellows naturally from the notion of continuous loss function Emerging producer tolerance methodology has proceeded without benefit of carefully defined assumptions. We rectifg this omission and consider the process mean deviation. Then develope the models for which determine the tolerenes in cases of the-nominal-the-best, the-smaller-the-better and the-larger-the-better. Finally the numerical examples are Presented to illustrated these results and also the sensitivity analysis to apprehend the changes of loss tolerances varying with mean is presented.

  • PDF

Evaluation on the Relationship between Software Engineering Level and Schedule Deviation in Software Development (SW 공학수준과 SW 프로젝트 납기성과와의 관계)

  • Kim, Seung-Gweon;Ko, Byung-Sun
    • Journal of Information Technology Services
    • /
    • v.10 no.4
    • /
    • pp.191-204
    • /
    • 2011
  • Recently, many software companies are trying to improve the software quality and project outcome with more costs and efforts in development time. In the software convergence and integration environments, it is required efforts to gain high quality of software. In other words, it is required to utilize software engineering knowledge and technology for higher software quality and better software project productivity. The Software development productivity can be varied by software process capability according to building a framework for software development, selection and use of appropriate technology, human resource management. Software process capability will influence software project outcome which is the general opinion. This study provides empirical evidence about software engineering efforts and investment approach to lead software project performance. We measured the software engineering efforts by SW engineering level and analyzed the corelation between software engineering level and schedule deviation. And, we verified that this performance is affected by the size of software company. As a result, software process capability is important to build a infrastructure and develop systematically software project. The higher software engineering level can lead to improved software project performance.

A Study on the Application of Constrained Bayes Estimation for Product Quality Control (Constrained 베이즈 추정방식의 제품 품질관리 활용방안에 관한 연구)

  • Kim, Tai-Kyoo;Kim, Myung Joon
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.1
    • /
    • pp.57-66
    • /
    • 2015
  • Purpose: The purpose of this study is to apply the constrained Bayesian estimation methodology for product quality control process and prove the effectiveness of the product management by comparing with the well-known Bayes estimator through data performance result. Methods: The Bayes and constrained Bayes estimators were produced based on the theoretical background and for confirming the effectiveness of suggested application, the deviation index was defined and calculated for the comparison. Results: The statistical analysis result shows that applying the suggested estimation methodology, that is, constrained Bayes estimator improves the effectiveness of the index with regard to reduce the error by matching the first two empirical moments. Conclusion: Considering the advanced Bayesian approaches such as constrained Bayes estimation for the product quality control process, the newly defined deviation index reduces the error for estimating the parameter histogram which is reflected both location and deviation parameters and furthermore various Bayesian perspective approaches seems to be meaningful for managing the product quality control process.

Numerical and Experimental Investigation of the Heating Process of Glass Thermal Slumping

  • Zhao, Dachun;Liu, Peng;He, Lingping;Chen, Bo
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.314-320
    • /
    • 2016
  • The glass thermal forming process provides a high volume, low cost approach to producing aspherical reflectors for x-ray optics. Thin glass sheets are shaped into mirror segments by replicating the mold shape at high temperature. Heating parameters in the glass thermal slumping process are crucial to improve surface quality of the formed glass. In this research, the heating process of a thermal slumping glass sheet on a concave parabolic mold was simulated with the finite-element method (FEM) to investigate the effects of heating rate and soaking temperature. Based on the optimized heating conditions, glass samples 0.5 mm thick were formed in a furnace with a steel concave parabolic mold. The figure errors of the formed glass were measured and discussed in detail. It was found that the formed glass was not fully slumped at the edges, and should be trimmed to achieve better surface deviation. The root-mean-square (RMS) deviation and peak-valley (PV) deviation between formed glass and mold along the axial direction were 2.3 μm and 4.7 μm respectively.