LIMIT BEHAVIORS FOR THE INCREMENTS OF A d-DIMENSIONAL MULTI-PARAMETER GAUSSIAN PROCESS |
CHOI YONG-KAB
(Department of Mathematics Gyeongsang National University)
LIN ZRENGYAN (Department of Mathematics Zhejiang University) SUNG HWA-SANG (Department of Mathematics Gyeongsang National University) HWANG KYO-SHIN (Department of Mathematics Gyeongsang National University) MOON HEE-JIN (Department of Mathematics Gyeongsang National University) |
1 | Y. K. Choi, Erdos-Renyi-type laws applied to Gaussian processes, J. Math. Kyoto Univ. 31 (1991), no. 3, 191-217 DOI |
2 | Y. K. Choi, Asymptotic behaviors for the increments of Gaussian random fields, J. Math. Anal. Appl. 246 (2000), no. 2, 557-575 DOI ScienceOn |
3 | M. Csorgo, R. Norvaisa, and B. Szyszkowicz, Convergence of weighted partial sums when the limiting distribution is not necessarily random, Stochastic Process Appl. 81 (1999), 81-101 DOI ScienceOn |
4 | M. Csorgo and P. Revesz, How big are the increments of a multi-parameter Wiener process?, Z. Wahrsch. verw. Gebiete 42 (1978), 1-12 DOI |
5 | M. Csorgo and P. Revesz, Strong Approximations in Probability and Statistics, Academic Press, New York, 1981 |
6 | M. Csorgo and Q. M. Shao, Strong limit theorems for large and small increments of -valued Gaussian processes, Ann. Probab. 21 (1993), no. 4, 1958-1990 DOI ScienceOn |
7 | M. Csorgo and Q. M. Shao, On almost sure limit inferior for B-valued stochastic processes and applications, Probab. Theory Related Fields 99 (1994), 29-54 DOI ScienceOn |
8 | M. Csorgo, B. Szyszkowicz, and Q. Wang, Donsker's theorem for self-normalized partial sum processes, Ann. Probab. 31 (2003), 1228-1240 DOI ScienceOn |
9 | Z. Y. Lin and Y. C. Qin, On the increments of -valued Gaussian processes, Asymptotic Methods in Probab. and Statistics edited by B. Szyszkowicz, Elsevier Science, 1998, 293-302 |
10 | J. Ortega, On the size of the increments of non-stationary Gaussian processes, Stochastic Process Appl. 18 (1984), 47-56 DOI ScienceOn |
11 | B. Szyszkowicz, of weighted partial sum processes, Stochastic Process Appl. 45 (1993), 295-308 DOI ScienceOn |
12 | Q. M. Shao, Recent developments on self-normalized limit theorems, Asymptotic Methods in Probability and Statistics edited by B. Szyszkowicz, Elsevier Science, 1998, 467-480 |
13 | D. Slepian, The one-sided barrier problem for Gaussian noise, Bell. System Tech. J. 41 (1962), 463-501 DOI |
14 | J. Steinebach, On a conjecture of Revesz and its analogue for renewal processes, Asymptotic Methods in Probability and Statistics edited by B. Szyszkowicz, Elsevier Science, 1998, 311-322 |
15 | Y. K. Choi and K. S. Hwang, How big are the lag increments of a Gaussian process?, Comput. Math. Appl. 40 (2000), 911-919 DOI ScienceOn |
16 | Y. K. Choi and N. Kono, How big are the increments of a two-parameter Gaussian process?, J. Theoret. Probab. 12 (1999), no. 1, 105-129 DOI ScienceOn |
17 | E. Csaki, M. Csorgo, Z. Y. Lin, and P. Revesz, On infinite series of independent Ornstein-Uhlenbeck processes, Stochastic Process Appl. 39 (1991), 25-44 DOI ScienceOn |
18 | M. Csorgo, Z. Y. Lin, and Q. M. Shao, On moduli of continuity for local time of Gaussian processes, Stochastic Process Appl. 58 (1995), 1-21 DOI ScienceOn |
19 | N. Kono, The exact modulus of continuity for Gaussian processes taking values of finite dimensional normed space, Trends in Probab. Related Analysis, SAP'96, World Scientific, Singapore, 1996, 219-232 |
20 | P. Deheuvels and J. Steinebach, Exact convergence rates in strong approximation laws for large increments of partial sums, Probab. Theory Related Fields 76 (1987), 369-393 DOI |
21 | M. R. Leadbetter, G. Lindgren, and H. Rootzen, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York, 1983 |
22 | Z. Y. Lin and Y. K. Choi, Some limit theorems for fractional Levy Brownian fields, Stochastic Process Appl. 82 (1999), 229-244 DOI ScienceOn |
23 | Z. Y. Lin and C. R. Lu, Strong Limit Theorems, Kluwer Academic Publ., Hong Kong, 1992 |
24 | Z. Y. Lin and Y. K. Choi, Some limit theorems on the increments of a multi-parameter fractional Brownian motion, Stochastic Anal. Appl. 19 (2001), no. 4, 499-517 DOI ScienceOn |
25 | J. Steinebach, On the increments of partial sum processes with multi-dimensional indices, Z. Wahrsch. verw. Gebiete 63 (1983), 59-70 DOI |
26 | L. X. Zhang, Some liminf results on increments of fractional Brownian motions, Acta Math. Hungar. 71 (1996), no. 3, 215-240 DOI ScienceOn |
27 | L. X. Zhang, A note on liminfs for increments of a fractional Brownian motion, Acta Math. Hungar. 76 (1997), 145-154 DOI ScienceOn |
28 | W. V. Li and Q. M. Shao, A normal comparison inequality and its application, Probab. Theory Related Fields 122 (2002), 494-508 DOI ScienceOn |