• Title/Summary/Keyword: problem-solving reasoning

Search Result 280, Processing Time 0.025 seconds

An Analysis of Children's Proportional Reasoning in Proportional Problems with Iconic Representations (영상적 표상이 포함된 비례 문제에서 나타난 아동들의 비례적 사고 분석)

  • Kim, Min-Kyeoug
    • The Mathematical Education
    • /
    • v.46 no.2 s.117
    • /
    • pp.141-153
    • /
    • 2007
  • The purpose of the study is to analyze children's proportional reasoning and problem solving in proportional problems with/without iconic representations. Proportional problems include 3 tasks such as (a) without any picture, (b) with simple picture, and (c) with/without iconic representation. As a result, children didn't show any significant differences in two tasks such as (a) and (b). However, children showed better proportional reasoning with iconic representation. In addition, 'build-up expression' strategy was used mostly in solving problems and 'additive strategy' was shown as an error which students didn't make an appropriate proportional relation expression and they made a wrong additive strategy.

  • PDF

Comparison on Problem Solving of Earth Science Area by Science Gifted Children's Gender (과학 영재들의 성별에 따른 지구과학 영역 문제해결과정에 대한 비교)

  • Park, Byoung-Tae;Kwon, Chi-Soon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.2 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • This study was designed to explore problem solving process to earth science area by elementary science gifted children, which compared and analyzed the questionnaires and problem solving to earth science area by gifted Science education center, Seoul National University Of Education, The analyzed results showed difference by gender that in the science study level at the time of entrance to the gifted Science education center, male students was the highest in the middle school as 37.5%, and female students in the elementary 6th grade as 61.5%. And male students were investigated to do more precedent study than female students. Secondly, in the problem solving process of earth science related problems, males made most use of problem solving process area(30.3%), and females symbolizing (27.5%) area. Thirdly, comparison of reasoning technology in problem solving process by gender indicated that both sexes made the most use of analytical reasoning (male 62.0%, female 53.6%) to solve problems.

  • PDF

Statistical Reasoning of Preservice Elementary School Teachers Engaged in Statistical Problem Solving: Focused on Question Posing Stage (통계적 문제해결 과정에서 나타난 예비초등교사들의 통계적 추론 분석 : 질문 생성 단계를 중심으로)

  • Lee, Eun-Jung;Park, Minsun
    • Education of Primary School Mathematics
    • /
    • v.22 no.4
    • /
    • pp.205-221
    • /
    • 2019
  • The study aimed at investigating preservice elementary school teachers' statistical reasoning when they posed survey questions as they engaged in statistical problem solving, and analyzing how their statistical reasoning affect the subsequent stages. 24 groups of sophomore students(80 students) from two education universities conducted statistical problem solving and completed statistical report, and 22 of them were analyzed. As a result, 9 statistical reasoning were shown when preservice teachers posed survey questions. Among them, question clarification oriented reasoning and variability based reasoning were not exclusively focused upon in the previous research. In order to investigate how statistical reasoning in posing survey questions affected subsequent stages, we examined difficulties and issues that preservice teachers had when they engaged in analyses and conclusion stage described in their report. Consequently, preservice teachers' difficulties were related to population relevant reasoning, category level reasoning, standardization reasoning, alignment to question reasoning, and question clarification oriented reasoning. While previous studies did not focus on question posing stage, this study claimed the necessity of emphasizing various statistical reasoning in question posing and importance of teaching and learning method of appropriate statistical reasoning in question posing.

A Study on Teaching Method of Area Formulas in Plane Figures - Inductive Reasoning vs. Problem Solving - (평면도형의 넓이 지도 방법에 대한 고찰 - 귀납적 방법 대 문제해결식 방법 -)

  • Kang, Moonbong;Kim, Jeongha
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.461-472
    • /
    • 2015
  • Korean students are taught area formulas of parallelogram and triangle by inductive reasoning in current curriculum. Inductive thinking is a crucial goal in mathematics education. There are, however, many problems to understand area formula inductively. In this study, those problems are illuminated theoretically and investigated in the class of 5th graders. One way to teach area formulas is suggested by means of process of problem solving with transforming figures.

The Effect of Geometry Learning through Spatial Reasoning Activities on Mathematical Problem Solving Ability and Mathematical Attitude (공간추론활동을 통한 기하학습이 수학적 문제해결력과 수학적 태도에 미치는 효과)

  • Shin, Keun-Mi;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.401-420
    • /
    • 2010
  • The purpose of this research is to find out effectiveness of geometry learning through spatial reasoning activities on mathematical problem solving ability and mathematical attitude. In order to proof this research problem, the controlled experiment was done on two groups of 6th graders in N elementary school; one group went through the geometry learning style through spatial reasoning activities, and the other group went through the general geometry learning style. As a result, the experimental group and the comparing group on mathematical problem solving ability have statistically meaningful difference. However, the experimental group and the comparing group have not statistically meaningful difference on mathematical attitude. But the mathematical attitude in the experimental group has improved clearly after all the process of experiment. With these results we came up with this conclusion. First, the geometry learning through spatial reasoning activities enhances the ability of analyzing, spatial sensibility and logical ability, which is effective in increasing the mathematical problem solving ability. Second, the geometry learning through spatial reasoning activities enhances confidence in problem solving and an interest in mathematics, which has a positive influence on the mathematical attitude.

  • PDF

Gifted Middle School Students' Covariational Reasoning Emerging through the Process of Algebra Word Problem Solving (대수 문장제의 해결에서 드러나는 중등 영재 학생간의 공변 추론 수준 비교 및 분석)

  • Ma, Minyoung;Shin, Jaehong
    • School Mathematics
    • /
    • v.18 no.1
    • /
    • pp.43-59
    • /
    • 2016
  • The purpose of this qualitative case study is to investigate differences among two gifted middle school students emerging through the process of algebra word problem solving from the covariational perspective. We collected the data from four middle school students participating in the mentorship program for gifted students of mathematics and found out differences between Junghee and Donghee in solving problems involving varying rates of change. This study focuses on their actions to solve and to generalize the problems situations involving constant and varying rates of change. The results indicate that their covariational reasoning played a significant role in their algebra word problem solving.

Development of Instructional Models for Problem Solving in Quadratic Functions and Ellipses (이차함수와 타원의 문제해결 지도를 위한 멀티미디어 학습자료 개발)

  • 김인수;고상숙;박승재;김영진
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.1
    • /
    • pp.59-71
    • /
    • 1998
  • Recently, most classrooms in Korea are fully equipped with multimedia environments such as a powerful pentium pc, a 43″large sized TV, and so on through the third renovation of classroom environments. However, there is not much software teachers can use directly in their teaching. Even with existing software such as GSP, and Mathematica, it turns out that it doesn####t fit well in a large number of students in classrooms and with all written in English. The study is to analyze the characteristics of problem-solving process and to develop a computer program which integrates the instruction of problem solving into a regular math program in areas of quadratic functions and ellipses. Problem Solving in this study included two sessions: 1) Learning of basic facts, concepts, and principles; 2) problem solving with problem contexts. In the former, the program was constructed based on the definitions of concepts so that students can explore, conjecture, and discover such mathematical ideas as basic facts, concepts, and principles. In the latter, the Polya#s 4 phases of problem-solving process contributed to designing of the program. In understanding of a problem, the program enhanced students#### understanding with multiple, dynamic representations of the problem using visualization. The strategies used in making a plan were collecting data, using pictures, inductive, and deductive reasoning, and creative reasoning to develop abstract thinking. In carrying out the plan, students can solve the problem according to their strategies they planned in the previous phase. In looking back, the program is very useful to provide students an opportunity to reflect problem-solving process, generalize their solution and create a new in-depth problem. This program was well matched with the dynamic and oscillation Polya#s problem-solving process. Moreover, students can facilitate their motivation to solve a problem with dynamic, multiple representations of the problem and become a powerful problem solve with confidence within an interactive computer environment. As a follow-up study, it is recommended to research the effect of the program in classrooms.

  • PDF

Chemistry Problem Solving Related to the Characteristics of Problem and Problem Solver: An Analysis of Time and Transition in Solving Problem (문제와 문제해결자의 특성에 따른 화학 문제 해결:문제 해결 시간과 전이 분석)

  • Seoul National University, Tae-Hee Noh;Seoul National University, Kyung-Moon Jeon
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 1997
  • Students' protocols obtained from think-aloud interviews were analyzed in the aspects of the success at first two problem-solving stages (understanding and planning), the time to complete a problem, the time at each problem-solving stage, the number of transition, and the transition rate. These were compared in the aspects of the context of problem, the success in solving problem, students' logical reasoning ability, spatial ability, and learning approach. The results were as follows:1. Students tended to spend more time in everyday contexts than in scientific contexts, especially at the stages of understanding and reviewing. The transition rate during solving a problem in everyday contexts was greater than that in scientific contexts. 2. Unsuccessful students spent more time at the stage of understanding, but successful students spent more time at the stage of planning. 3. Students' logical reasoning ability, as measured with the Group Assessment of Logical Thinking, was significantly correlated with the success in solving problem. Concrete-operational students spent more time in completing a problem, especially understanding the problem. 4. Students' spatial ability, as measured with the Purdue Visualization of Rotations Test and the Find A Shape Puzzle, was significantly correlated with their abilities to understand a problem and to plan for its solution. 5. Students' learning approach, as measured with the Questionnaire on Approaches to Learning and Studying, was not significantly correlated with the success in solving problem. However, the students in deep approach had more transitions and greater transition rates than the students in surface approach.

  • PDF

A New Screening Method for Potentially Gifted Children : Problem Solving Activities (문제해결을 통한 영재아 선별에 관한 연구)

  • Chung, Young Sun
    • Korean Journal of Child Studies
    • /
    • v.25 no.3
    • /
    • pp.15-26
    • /
    • 2004
  • The problem solving activities developed for this formal assessment program are based on familiar, real life problems. Responses of third and fourth grade subjects to problem solving items were assessed by problem solving ability, reasoning, and imagination/creativity. Reliability of problem solving activities was supported by the results of interrater reliability and Cronbach's alpha. Correlations between problem solving activities and the Naglieri Nonverbal Ability Test(NNAT: 1985) showed that cluster scores on the NNAT were significantly related to each score on the problem solving activities. Problem solving by gender showed that girls were more likely to express ideas than boys. There were also differences related to grade level on some items.

  • PDF

Mathematical Thinking through Problem Solving and Posing with Fractions

  • Cheng, Chun Chor Litwin
    • Research in Mathematical Education
    • /
    • v.16 no.1
    • /
    • pp.15-29
    • /
    • 2012
  • One of the important aims in mathematics education is to enhance mathematical thinking for students. And students posing questions is a vital process in mathematical thinking as it is part of the reasoning and communication of their learning. This paper investigates how students develop their mathematical thinking through working on tasks in fractions and posing their own questions after successfully solved the problems. The teaching was conducted in primary five classes and the results showed that students' reasoning is related to their analogy with what previously learned. Also, posing their problems after solving the problem not only helps students to understand the structure of the problem, it also helps students to explore on different routes in solving the problem and extend their learning content.