• Title/Summary/Keyword: problem development

Search Result 9,223, Processing Time 0.032 seconds

The Impact of Dynamic Geometry Software on High School Students' Problem Solving of the Conic Sections (동적기하가 원뿔곡선 문제 해결에 미치는 영향)

  • Hong, Seong-Kowan;Park, Cheol-Ho
    • The Mathematical Education
    • /
    • v.46 no.3
    • /
    • pp.331-349
    • /
    • 2007
  • This study aims to improve the teaching and learning method on the conic sections. To do that the researcher analyzed the impact of dynamic geometry software on students' problem solving of the conic sections. Students often say, "I have solved this kind of problem and remember hearing the problem solving process of it before." But they often are not able to resolve the question. Previous studies suggest that one of the reasons can be students' tendency to approach the conic sections only using algebra or analytic geometry without the geometric principle. So the researcher conducted instructions based on the geometric and historico-genetic principle on the conic sections using dynamic geometry software. The instructions were intended to find out if the experimental, intuitional, mathematic problem solving is necessary for the deductive process of solving geometric problems. To achieve the purpose of this study, the researcher video taped the instruction process and converted it to digital using the computer. What students' had said and discussed with the teacher during the classes was checked and their behavior was analyzed. That analysis was based on Branford's perspective, which included three different stage of proof; experimental, intuitive, and mathematical. The researcher got the following conclusions from this study. Firstly, students preferred their own manipulation or reconstruction to deductive mathematical explanation or proving of the problem. And they showed tendency to consider it as the mathematical truth when the problem is dealt with by their own manipulation. Secondly, the manipulation environment of dynamic geometry software help students correct their mathematical misconception, which result from their cognitive obstacles, and get correct ones. Thirdly, by using dynamic geometry software the teacher could help reduce the 'zone of proximal development' of Vigotsky.

  • PDF

The analysis of middle school students' problem posing types and strategies (중학생들의 수학적 문제제기 유형과 전략 분석)

  • Joo, Hongyun;Han, Hyesook
    • The Mathematical Education
    • /
    • v.55 no.1
    • /
    • pp.73-89
    • /
    • 2016
  • The purpose of this study was to analyze middle school students' problem posing types and strategies. we analyzed problems posed by 120 middle school students during mathematics class focused on problem posing activities in various aspects. Students' posed problems were classified into five types: not a problem(NP), non-math(NM), impossible(IM), insufficient(IN), sufficient(SU) and each of the posed problems. Students used three kinds of problem posing strategies such as goal manipulation(GM), assumption manipulation(AM), and condition manipulation(CM), and in posing one problem, one or more than two strategies were used. According to the prior studies, problem posing can contributes to the development of students' problem solving ability, creativity, mathematical aptitude, and a broader understanding of mathematical concepts. However, we found that some students had difficulties in posing problems or limited understandings of that. We hope the results of the study contribute to encouraging problem posing activities in mathematics instruction.

Analysis of Engineering Problem-Solving Ability by the TRIZ Learning (트리즈 학습에 따른 공학적 문제해결능력 분석)

  • Lee, Jae-Kyoung
    • Journal of Engineering Education Research
    • /
    • v.19 no.6
    • /
    • pp.3-9
    • /
    • 2016
  • Amonng many creative problem-solving methodologies, the TRIZ with practicality and applicability has been utilized a lot in practice and education. This research introduced the TRIZ course for engineering problem-solving training to engineering college students. Then, a survey about students' ability to solve engineering problems after the TRIZ course were analyzed statistically. Finally, problem-solving cases of industry in each team project were examined. It is proved that an understanding of the TRIZ should be confirmed on that can be applied and utilized and can be linked to well performing team projects. Therefore, it is determined that more active efforts are required for the development of TRIZ learing methods to improve the education system to help students improve comprehension for students in creative problem-solving skills.

Moderating Effects of Mother's Support and Community Environment on Relationships Between After School Self-Care and Problem Behavior (아동의 방과 후 자기보호와 문제행동과의 관계에서 어머니 지지 및 지역사회 환경의 중재효과)

  • Kong, You Kyoung;Kim, Hee Haw
    • Korean Journal of Child Studies
    • /
    • v.27 no.2
    • /
    • pp.153-165
    • /
    • 2006
  • This study examined moderating effects of mother's support and community environment on relationships between after school self-care and problem behaviors. Subjects were 579 3rd and 6th grade elementary school children. Major findings were positive relationships between after school self-care and problem behaviors. Neither gender differences nor grade differences were found in the relationships between after school self-care and problem behaviors. Moderating effects of care by relatives or neighbors on mother's support was shown in the relationships between after school self-care and internal problem behaviors. Moderating effects of proximity to harmful facilities were found in relationships between after school self-care and external problem behaviors.

  • PDF

Development and Application of Teaching Strategy Focused on Problem Solving Process in the 'Separation of Mixture' Unit of Third Grade Elementary School (초등학교 3학년 '혼합물의 분리' 단원에서 문제해결 과정을 강조한 수업 전략 개발 및 적용)

  • Lee, Shin Hyun;Choi, Sun-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • The purpose of this study was to develop a teaching strategy focused on problem solving process and explore its effects on science creative problem solving ability, science process skills, science academic achievements and scientific attitudes of students after applying it. Teaching strategy focused on problem solving process employed brainstorming and PMI thinking strategies. The participants were the third grade students of both an experimental class(26 students) and a comparative class(25 students) at the S elementary school located in Goyang-City, Kyonggi Province. The developed strategy was applied to the experimental class for 9 periods of 'Separation of mixture' unit. The results of the tests on the science creative problem solving ability, the science process skills, scientific achievement and scientific attitude were statistically higher in the experimental class.

A Study on Development of Problem-Centered Learning Materials for the 7th Mathematics Curriculum (제 7차 수학 교육과정에 따른 수학과 문제 중심 학습 자료 개발 연구)

  • 신인선;권점례
    • The Mathematical Education
    • /
    • v.42 no.3
    • /
    • pp.369-386
    • /
    • 2003
  • Problem-centered learning has many implications on teaching and learning mathematics. Students devise their solutions to solve problems and participate in the discussion with teacher and other students to share and justify their solution during the problem-centered learning. Therefore, we purposed to provide problem-centered loaming materials to be able to use in teaching and loaming the 7th mathematics curriculum in this study. First, we reviewed the 7th curriculum and its textbooks to know what and how students learn and suggested the problem-centered learning as a teaching method to perform the 7th curriculum. Next, we developed the problem-centered loaming materials for 6th grade in elementary school and taught students with these materials to amend errors. Finally, we developed evaluation criteria to evaluate students while they teamed mathematics in the problem-centered learning.

  • PDF

A Study on the Explanation Scheme using Problem Solving Primitives

  • Lee, Gye Sung
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.158-165
    • /
    • 2019
  • Knowledge based system includes tools for constructing, testing, validating and refining the system along with user interfaces. An important issue in the design of a complete knowledge based system is the ability to produce explanations. Explanations are not just a series of rules involved in reasoning track. More detailed and explicit form of explanations is required not only for reliable reasoning but also for maintainability of the knowledge based system. This requires the explanation mechanisms to extend from knowledge oriented analysis to task oriented explanations. The explicit modeling of problem solving structures is suggested for explanation generation as well as for efficient and effective reasoning. Unlike other explanation scheme such as feedback explanation, the detailed, smaller and explicit representation of problem solving constructs can provide the system with capability of quality explanation. As a key step to development for explanation scheme, the problem solving methods are broken down into a finer grained problem solving primitives. The system records all the steps with problem solving primitives and knowledge involved in the reasoning. These are used to validate the conclusion of the consultation through explanations. The system provides user interfaces and uses specific templates for generating explanation text.

Design of Problem Solving Primitives for Efficient Evidential Reasoning

  • Lee, Gye Sung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.49-58
    • /
    • 2019
  • Efficient evidential reasoning is an important issue in the development of advanced knowledge based systems. Efficiency is closely related to the design of problems solving methods adopted in the system. The explicit modeling of problem-solving structures is suggested for efficient and effective reasoning. It is pointed out that the problem-solving method framework is often too coarse-grained and too abstract to specify the detailed design and implementation of a reasoning system. Therefore, as a key step in developing a new reasoning scheme based on properties of the problem, the problem-solving method framework is expanded by introducing finer grained problem-solving primitives and defining an overall control structure in terms of these primitives. Once the individual components of the control structure are defined in terms of problem solving primitives, the overall control algorithm for the reasoning system can be represented in terms of a finite state diagram.

Frequency Assignment Method using NFD and Graph Coloring for Backbone Wireless Links of Tactical Communications Network (통합 필터 변별도와 그래프 컬러링을 이용한 전술통신망 백본 무선 링크의 주파수 지정 방법)

  • Ham, Jae-Hyun;Park, Hwi-Sung;Lee, Eun-Hyoung;Choi, Jeung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.441-450
    • /
    • 2015
  • The tactical communications network has to be deployed rapidly at military operation area and support the communications between the military command systems and the weapon systems. For that, the frequency assignment is required for backbone wireless links of tactical communications network without frequency interferences. In this paper, we propose a frequency assignment method using net filter discrimination (NFD) and graph coloring to avoid frequency interferences. The proposed method presents frequency assignment problem of tactical communications network as vertex graph coloring problem of a weighted graph. And it makes frequency assignment sequences and assigns center frequencies to communication links according to the priority of communication links and graph coloring. The evaluation shows that this method can assign center frequencies to backbone communication links without frequency interferences. It also shows that the method can improve the frequency utilization in comparison with HTZ-warfare that is currently used by Korean Army.

The Effects of Mathematical Games with Motion on Young Children's Development (운동요소가 포함된 수학게임이 유아발달에 미치는 효과)

  • Chang, Bo-Kyung
    • Korean Journal of Human Ecology
    • /
    • v.19 no.2
    • /
    • pp.271-283
    • /
    • 2010
  • This study was planned to investigate the effects of mathematical games with motion on young children's development. The study was performed to compose mathematical games with motion and just mathematical games for young children. The games were set up to be executed 16 times for 8 weeks. The results of this study were as follows: Mathematical games with motion had a significant effect on young children's mathematical problem-solving ability. Mathematical games with motion had a significant effect in every category on young children's ability for motion competence and mathematical games with motion had a significant effect on young children's socio-emotional development. There were significant differences between the control group and the experimental group except for the independence from teachers and peer interaction. Mathematical games with motion had a significant effect on young children's language ability.