• 제목/요약/키워드: problem decomposition

검색결과 592건 처리시간 0.026초

Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence

  • Kataoka, Hiroto;Mizuno, Minoru
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.379-392
    • /
    • 2002
  • Numerical flow computations around an aeroelastic 3D square cylinder immersed in the turbulent boundary layer are shown. Present computational code can be characterized by three numerical aspects which are 1) the method of artificial compressibility is adopted for the incompressible flow computations, 2) the domain decomposition technique is used to get better grid point distributions, and 3) to achieve the conservation law both in time and space when the flow is computed a with moving and transformed grid, the time derivatives of metrics are evaluated using the time-and-space volume. To provide time-dependant inflow boundary conditions satisfying prescribed time-averaged velocity profiles, a convenient way for generating inflow turbulence is proposed. The square cylinder is modeled as a 4-lumped-mass system and it vibrates with two-degree of freedom of heaving motion. Those blocks which surround the cylinder are deformed according to the cylinder's motion. Vigorous oscillations occur as the vortex shedding frequency approaches cylinder's natural frequencies.

T-게이트 통합 모듈에 의한 조합 MVL 함수의 구성 (Construction of Combinational MVL Function Based on T-Gate Integrated Module)

  • 박동영;최재석;김흥수
    • 대한전자공학회논문지
    • /
    • 제26권11호
    • /
    • pp.1839-1849
    • /
    • 1989
  • An optimal variable assignment algorithm is presented as a decomposition method of MVL functions. A given 3-valued combinational logic function is disintegrated into subfunction composed of the function dependant relation, then extracted implicant output elements from subfunctions are assigned to a T-gates. As a circuit implementation tool, a programmable integarated T-gate module is proposed, and the construction procedure of combinational MVL functions is systematized in each step. This method is expected to give properties of the systematic procedure, possibility of T-gate number reduction, unification of module, and flexibility of module composition. Specially variable decomposition method can be pointed out as an approach to solving the limitation problem of the input and output terminal number in VLSI implementations.

  • PDF

Vision Based Map-Building Using Singular Value Decomposition Method for a Mobile Robot in Uncertain Environment

  • Park, Kwang-Ho;Kim, Hyung-O;Kee, Chang-Doo;Na, Seung-Yu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.101.1-101
    • /
    • 2001
  • This paper describes a grid mapping for a vision based mobile robot in uncertain indoor environment. The map building is a prerequisite for navigation of a mobile robot and the problem of feature correspondence across two images is well known to be of crucial Importance for vision-based mapping We use a stereo matching algorithm obtained by singular value decomposition of an appropriate correspondence strength matrix. This new correspondence strength means a correlation weight for some local measurements to quantify similarity between features. The visual range data from the reconstructed disparity image form an occupancy grid representation. The occupancy map is a grid-based map in which each cell has some value indicating the probability at that location ...

  • PDF

Robust Non-negative Matrix Factorization with β-Divergence for Speech Separation

  • Li, Yinan;Zhang, Xiongwei;Sun, Meng
    • ETRI Journal
    • /
    • 제39권1호
    • /
    • pp.21-29
    • /
    • 2017
  • This paper addresses the problem of unsupervised speech separation based on robust non-negative matrix factorization (RNMF) with ${\beta}$-divergence, when neither speech nor noise training data is available beforehand. We propose a robust version of non-negative matrix factorization, inspired by the recently developed sparse and low-rank decomposition, in which the data matrix is decomposed into the sum of a low-rank matrix and a sparse matrix. Efficient multiplicative update rules to minimize the ${\beta}$-divergence-based cost function are derived. A convolutional extension of the proposed algorithm is also proposed, which considers the time dependency of the non-negative noise bases. Experimental speech separation results show that the proposed convolutional RNMF successfully separates the repeating time-varying spectral structures from the magnitude spectrum of the mixture, and does so without any prior training.

APPROXIMATE ANALYSIS OF AN N-DESIGN CALL CENTER WITH TWO TYPES OF AGENTS

  • Park, Chul-Geun;Han, Dong-Hwan;Baik, Kwang-Hyun
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1021-1035
    • /
    • 2008
  • In this paper, we analyze an N-design call center with skill-based routing, in which one pool of agents handles two types of calls and another pool of agents handles only one type of calls. The approximate analysis is motivated by a computational complexity that has been observed in the direct stochastic approach and numerical method for finding performance measures. The workforce staffing policy is very important to the successful management of call centers. So the allocation scheduling of the agents can be considered as the optimization problem of the corresponding queueing system to the call center. We use a decomposition algorithm which divides the state space of the queueing system into the subspaces for the approximate analysis of the N-design call center with two different types of agents. We also represent some numerical examples and show the impact of the system parameters on the performance measures.

  • PDF

Speech Enhancement Using Blind Signal Separation Combined With Null Beamforming

  • Nam Seung-Hyon;Jr. Rodrigo C. Munoz
    • The Journal of the Acoustical Society of Korea
    • /
    • 제25권4E호
    • /
    • pp.142-147
    • /
    • 2006
  • Blind signal separation is known as a powerful tool for enhancing noisy speech in many real world environments. In this paper, it is demonstrated that the performance of blind signal separation can be further improved by combining with a null beamformer (NBF). Cascading the blind source separation with null beamforming is equivalent to the decomposition of the received signals into the direct parts and reverberant parts. Investigation of beam patterns of the null beamformer and blind signal separation reveals that directional null of NBF reduces mainly direct parts of the unwanted signals whereas blind signal separation reduces reverberant parts. Further, it is shown that the decomposition of received signals can be exploited to solve the local stability problem. Therefore, faster and improved separation can be obtained by removing the direct parts first by null beamforming. Simulation results using real office recordings confirm the expectation.

Mode-SVD-Based Maximum Likelihood Source Localization Using Subspace Approach

  • Park, Chee-Hyun;Hong, Kwang-Seok
    • ETRI Journal
    • /
    • 제34권5호
    • /
    • pp.684-689
    • /
    • 2012
  • A mode-singular-value-decomposition (SVD) maximum likelihood (ML) estimation procedure is proposed for the source localization problem under an additive measurement error model. In a practical situation, the noise variance is usually unknown. In this paper, we propose an algorithm that does not require the noise covariance matrix as a priori knowledge. In the proposed method, the weight is derived by the inverse of the noise magnitude square in the ML criterion. The performance of the proposed method outperforms that of the existing methods and approximates the Taylor-series ML and Cram$\acute{e}$r-Rao lower bound.

최적조류계산의 분산처리기법에 관한 연구 (An Approach to Implementing Distributed Optimal Power Flow)

  • 김호웅;김발호;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.182-186
    • /
    • 1997
  • This paper presents a mathematical approach to implementing distributed optimal power flow (OPF), wherein a regional decomposition technique is adopted to parallelize the OPF. Three mathematical decomposition coordination methods are introduced firs to implement the proposed distributed scheme: the Auxiliary Problem Principle (APP), the Predictor-Corrector Proximal Multiplier Method (PCPM), and the Alternating Direction Method (ADM). Then two alternative schemes for modeling distributed OPF are introduced; the Dummy Generator-Dummy Generator (DGDG) scheme and Dummy Generator-Dummy Load (DGDL) scheme. We present the mathematical analyses of the proposed approach, and demonstrate the approach on several test, systems, including IEEE Reliability Test Systems and parts of the ERCOT (Electric Reliability Council of Texas) system.

  • PDF

경계면 처리 개선을 통한 다중해상도 유동해석 기법 개선 연구 (IMPROVEMENT OF FLOW SIMULATIONS METHOD WITH MULTI-RESOLUTION ANALYSIS BY BOUNDARY TREATMENT)

  • 강형민
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.44-50
    • /
    • 2015
  • The computational efficiency of flow simulations with Multi-resolution analysis (MRA) was enhanced via the boundary treatment of the computational domain. In MRA, an adaptive dataset to a solution is constructed through data decomposition with interpolating polynomial and thresholding. During the decomposition process, the basis points of interpolation should exceed the boundary of the computational domain. In order to resolve this problem, the weight coefficients of interpolating polynomial were adjusted near the boundaries. By this boundary treatment, the computational efficiency of MRA was enhanced while the numerical accuracy of a solution was unchanged. This modified MRA was applied to two-dimensional steady Euler equations and the enhancement of computational efficiency and the maintenance of numerical accuracy were assessed.

변수가 상, 하한을 가진 블록대각구조문제의 분해원리에 관한 소고 (Note on decomposition principle for block-angular linear programming problem with bounded variables)

  • 박순달
    • 한국경영과학회지
    • /
    • 제10권2호
    • /
    • pp.83-87
    • /
    • 1985
  • 분해원리(decomposition principle)은 선형계획법문제 중에서도 블록대각구조를 가진 특수 모형에 의한 해법으로 잘 알려져 있다. 그런데 일반적으로 소개되어 있는 분해원리는 변수가 비음의 조건을 가진 문제에 대한 해법이다. 블록대각 구조를 가진 선형계획법 문제는 잘 알려져 있는 바와 같이 하부구조를 가진 기관의 경영, 여러가지 종류의 사료배합 문제 등에 일어난다. 그런데 이런 문제의 대부분의 경우가 변수는 상.하한을 가지는 경우가 된다. 이 논문은 비음의 조건을 가지는 문제에 대한 분해원리를 발전시켜 이런 변수가 상.하한을 가지는 일반적인 문제를 풀 수 있도록 하고자 하는 것이다. 변수가 상.하한을 가지게 되며 우선 진입변수, 탈락변수를 결정하는 문제, 1단계(phase 1) 문제 등에 어려움이 나타난다. 이 논문은 이런 어려움들을 극복하고 나아가 주기억 공간이 제한되어 있는 소형전산기에 알맞는 계산방법을 연구하고자 한다.

  • PDF