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This paper addresses the problem of unsupervised 
speech separation based on robust non-negative matrix 
factorization (RNMF) with β-divergence, when neither 
speech nor noise training data is available beforehand.  
We propose a robust version of non-negative matrix 
factorization, inspired by the recently developed sparse 
and low-rank decomposition, in which the data matrix is 
decomposed into the sum of a low-rank matrix and a 
sparse matrix. Efficient multiplicative update rules to 
minimize the β-divergence-based cost function are derived. 
A convolutional extension of the proposed algorithm is 
also proposed, which considers the time dependency of the 
non-negative noise bases. Experimental speech separation 
results show that the proposed convolutional RNMF 
successfully separates the repeating time-varying spectral 
structures from the magnitude spectrum of the mixture, 
and does so without any prior training. 
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I. Introduction 

Non-negative matrix factorization (NMF) is an efficient tool 
for extracting perceptually meaningful components from 
mixtures [1], and has been extensively investigated within the 
context of several speech processing tasks such as speech 
separation [2], [3] and speech enhancement [4], [5]. To extract 
features for the involved constituent sources, a prior learning 
procedure to obtain the NMF bases is usually required. 
However, training data for the encountered speech and noise 
are not always available beforehand, which significantly limits 
the practicality of this approach. In this paper, we investigate  
an unsupervised approach to speech separation, capable of 
alleviating the reliance on prior training. 

An emerging technique for sparse and low rank 
decomposition, robust principal component analysis (RPCA) 
[6], has recently gained much attention. This technique 
decomposes the input data matrix into a sum of a low-rank 
matrix and a sparse matrix, in a well-behaved convex 
optimization framework. This mathematical model is 
particularly suitable for designing systems for unsupervised 
source separation, as it requires neither prior training nor 
handcrafted features. An RPCA was applied to separate voices 
from the background musical accompaniment in [7], by 
assuming that the musical accompaniment lies in a low-rank 
subspace because of its repeating nature—whereas a singing 
voice has rich variations and a harmonic structure that makes 
its spectrum relatively sparse. Based on these assumptions, the 
problem of source separation can be formulated as a 
decomposition of the mixed magnitude spectrum via RPCA, to 
estimate its underlying low-rank and sparse matrices. Several 
modifications to this basic approach—sharing the same 
principles—have been investigated, to further improve source 
separation performance [8], [9]. 

However, there is no guarantee in RPCA that all entries of the 
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decomposed matrices will be non-negative. Eventually negative 
entries are difficult to interpret when trying to relate them to the 
underlying speech or noise structures. Considering the non-
negativity of the input magnitude spectrum, it would be better if 
the entries of the constituent matrices could be forced to be non-
negative; this is the first motivation for this paper. 

The existing methods based on sparse and low-rank 
approximations—such as the robust non-negative matrix 
factorization (RNMF)—usually optimize a cost function defined 
by the squared error or Euclidean distance [10]. However, the 
Euclidean distance tends to overemphasize the reconstruction 
accuracy of large values—usually appearing in the low 
frequency regions—causing relatively large reconstruction errors 
in the higher frequency regions—which have relatively small 
values, but are perceptually important [11]. Divergence-based 
measures such as the generalized Kullback−Leibler (KL) 
divergence and the Itakura−Saito (IS) divergence have been 
found more appropriate in the context of speech separation [12], 
[13], because the divergence is sensitive to small values in the 
spectral approximation. However, as far as we know, RNMF 
was rarely investigated for these divergence metrics; this is the 
second motivation for this paper. 

To tackle the issues mentioned above, we propose an RNMF 
method with β-divergence, which is capable of elegantly 
preserving the non-negativity of the matrices resulting from the 
decomposition. Moreover, by considering the time dependency 
of the background noise, we introduce a convolutional 
extension of RNMF to model the repeating time-varying 
spectra: the convolutional RNMF. 

II. Robust Non-negative Matrix Factorization 

In this section, we will first address the issue of robust non-
negative matrix factorization, and subsequently derive 
multiplicative updating rules for RNMF. The convergence of 
the proposed algorithm is also considered. Finally, a 
convolutional version of RNMF is provided as an extension to 
conventional RNMF. 

1. Optimization Problem Formulation 

The goal of RNMF is to minimize the β-divergence between 
the non-negative matrix Y and its reconstruction WH + S, 
where W, H, and S are constrained to be non-negative. The 
problem of RNMF can therefore be formulated as follows: 
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The product of matrices W and H is the low-rank 
approximation of Y, protected by S from outlier corruption. 

Matrix S is constrained to be non-negative and sparse; 
parameter  controls its sparsity. The error function ( || )D    
is defined by the β-divergence, which covers a variety of cost 
functions that reflect the difference between the input and the 
reconstruction. The mathematical definition of β-divergence is: 
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The squared Euclidean distance, generalized KL divergence, 
and IS divergence correspond to the special cases of β = 0,    
β = 1, and β = 2, respectively. 

2. Updating Rules for RNMF with β-Divergence 

Inspired by the work of Lee and Seung [14], we derive 
multiplicative update rules for RNMF that promote 
convergence to the stationary points of (1), while ensuring the 
non-negativity of the parameter updates. 

The derivative of ( || )D x y  with respect to y is continuous 

in β, and can be written as: 

 2( || ) ( )y D x y y y x


   .           (3) 

From this equation, the cost function gradients can be simply 
expressed as: 
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and 
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where T denotes transposition, and   is the notation for the 
Hadamard product, the element-wise product of two matrices 
of the same size. I is an all-ones matrix with the same size of Y. 
The exponentiations are also carried out element-wise. 

Let C(θ) denote the cost as a function of θ; its gradient can be 
divided into a positive and a negative part, as follows: 

 ( ) ( ) ( )C C C        ,           (7) 

where both ( )C   and ( )C   are non-negative. The 
update algorithms can be transformed into their multiplicative 
forms as ( ). / ( )C C        (the “ . / ” operator 
stands for element-wise division) to satisfy the non-negativity 
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constraint of θ [15], [16]. 
Following this principle, we can derive the multiplicative 

update rules for RNMF based on the results of (4) to (6): 
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where all divisions are carried out element-wise. 
Note that all the multiplied elements are non-negative—

which ensures the non-negativity of the updated matrices—and 
that the updating rules are conveniently implemented, because 
there is no need for users to define the updating rate. 

3. Convergence of the Proposed Algorithm 

Definition. ˆ( | )G    is an auxiliary function for C(θ) if it 
satisfies the condition 

 ˆ( | ) ( )G C   , ˆ ˆ ˆ( | ) ( )G C   .         (11) 

Different auxiliary functions for different selections of β can be 
found in [17]. 
Theorem. By updating the three matrices with (8) through (10), 
the cost function of RNMF will monotonically decrease, until 
it converges to a local minimum. 

Proof. Let t denote the individual iterations; the decomposition 

of cost function C(t) after updating (8) to (10) will be denoted 

by ( )
1

tC , ( )
2

tC , and ( )
3

tC , respectively. 
The optimization procedure when fixing H and S to update 

W, and when fixing W and S to update H are essentially the 
same; therefore, we will again use θ to represent either of them. 

Given that there exists such an auxiliary function of C(θ), 

and the optimization of ˆ( | )G    over θ while fixing ̂  is 

simple, we can simplify the optimization of C(θ) by replacing  

it with a simpler optimization ˆarg min ( | )G   . The 

minimization of C(θ) can be conducted iteratively, because 
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( ) ( )
2 3 .t tC C  Therefore, the objective function keeps decreasing 

as the sequence of iterations progresses: 
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When ( 1) ( )t tC C  , the inequalities become equalities, and a 
local minimum is reached.                           ■ 

4. Convolutional RNMF 

RNMF constitutes a useful tool for unsupervised speech 
separation. However, it ignores the potential time dependencies 
across successive frames of the input magnitude spectrum. 
Such dependencies are not uncommon, especially when a few 
repeating time-varying patterns span over multiple frames of 
the entire sequence. We represent a single pattern by a 
sequence of consecutive column vectors, defined as a non-
negative basis function that spans the pattern length, as 
presented in [18]. 

The reconstruction approach in conventional NMF, 
,Y WH  was extended by the convolutional non-negative 

matrix factorization approach [19]–[21] as follows: 
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matrix boundaries. Analogously, 
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shift of H to the left. Therefore, with the above RNMF 

configuration, the objective function can be rewritten as: 
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This objective function can be seen as an extension of its 
RNMF counterpart. It can be optimized by updating the time-
sliced W(t) and the shifted approximation to H with the 
following rules: 
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and 
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The fact that each pattern W(t) shares the same H will lead to 
a biased estimate. To eliminate this effect, we can take the 
average of all the updates of H. 

Note that the proposed convolutional RNMF (CRNMF) is a 
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convolutional extension of RNMF; when T = 1, it will result in 
the standard RNMF described above. As will be seen in 
Section IV, this type of configuration of the bases model is 
particular good at detecting the potentially repeating (but still 
time-varying) patterns. 

III. Unsupervised Speech Separation 

The overall framework for unsupervised speech separation 
using CRNMF is illustrated in Fig. 1. The involved procedures 
can generally be divided into two categories: sparse and low-
rank decomposition, and post-processing. 

We first store the noisy speech into a buffer and calculate the 
noisy magnitude spectrogram using a short-time Fourier 
transformation (STFT). The phase of the noisy speech (denoted 
by  ) is stored for posterior clean speech synthesis. 

Either RNMF or CRNMF is then adopted to decompose the 
spectrogram into three components: a low-rank non-negative 
matrix resulting from the product of two low-rank non-
negative matrices, a sparse non-negative matrix representing 
clean speech, and a residual noise matrix. This type of 
decomposition is chosen because [22] has shown that, for the 
Euclidean distance metric, decomposing the noisy spectrum 
into three sub-matrices can provide better results than the use of 
the two sub-matrices alternative. However, only seldom has the 
issue of determining which divergence metric and residual 
noise assumptions are the most suitable in the context of 
speech separation. We will mainly focus on this issue, and 
explore it in the experimental section below. 

Note that the cost functions of RNMF and CRNMF are both 
defined by β-divergence. The assumptions imposed on the 
residual noise distributions will vary when the cost function 
changes. In particular, when β = 0, 1, and 2, the residual noise 
is assumed to be Gamma, Poisson, and Gaussian, respectively. 

Finally, to further boost the separation performance, the 
estimated clean speech and noise spectrograms are obtained by 
Wiener type filtering, a standard and widely used post-
processing strategy for NMF-based speech separation. 

 

1

0
1 1

0 0

( )
ˆ ˆ,

( ) ( )

T t

t
T Tt t

t t

t

t t

 


  

 

 
 



 
 

W H
S

S Y N Y
W H S W H S

.  (19) 

The clean speech and background noise waveforms can be 
estimated using the noisy phase   and the inverse STFT of 
Ŝ  and ˆ .N  

It should be noted that the diagram in Fig. 1 is only describing 
a basic separation system to help focus on the selection of the 
divergence cost function to be used under the sparse and low-
rank framework. The obtained performance can, however, be  

 

Fig. 1. Diagram of the proposed unsupervised framework for 
speech separation based on CRNMF. When the pattern 
length shrinks to one, CRNMF will reduce to the 
standard RNMF. 
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further improved through techniques such as adopting a 
universal speech dictionary [23], imposing temporal continuity 
to the sparse matrix [24], using an information fusion strategy 
[25], or a combination with autocorrelation [26]. The use of these 
techniques for performance improvement is beyond the scope of 
this paper, and will be explored in future works. 

IV. Experiments 

We conducted some experiments to evaluate the proposed 
algorithms in unsupervised speech separation. The noisy 
speech was synthesized by adding typical noises—including 
f16, babble, machinegun and factory1—to clean speech (ten 
sentences including five male and five female) at different 
input signal-to-noise ratios (SNRs), ranging from –5 dB to 
10 dB in 5 dB steps. We resampled clean speech from the 
TIMIT database and noises from the Noisex-92 database to a 
sampling rate of 8 kHz. For the STFT, we used 512-sample 
Hamming windows with 128-point shifts. Preliminary 
experiments showed that, for most kind of noises, the optimal 
number of noise bases was one. Even though a larger number 
of bases would enable a more accurate description of the noise 
component, it would also result in higher speech distortion, 
because speech components could leak into the low-rank noise 
representation. Therefore, in the following experiments, the 
number of noise bases was always set to one. For details on 
automatic parameter setting, please refer to [27]. 
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We also studied the selection of the regularization parameter , 
which controls the sparsity of S. This parameter can also be seen 
as a control of the trade-off between speech distortion and noise 
reduction. A smaller value will result in optimal separation results 
when the input SNR is high, whereas for lower input SNRs, a 
larger value of  tends to be more effective in extracting speech 
components while suppressing noise. 

The separation performance was evaluated by computing the 
signal-to-distortion-ratio (SDR) values using BSS-EVAL [28]. 
To evaluate the performance of the different divergence 
measures, we also used the segment SNR (SegSNR) and 
perceptual evaluation of speech quality (PESQ) as 
performance metrics. In the experimental setting, we first 
compared the performance of RNMF with different cost 
functions, to show the necessity of using divergence—rather 
than Euclidean distance—as a metric. Subsequently, the 
separation performance of RNMF under different input SNRs 
and noise types was investigated, to determine which 
divergence measure is most suitable in the context of speech 
enhancement. Finally, the superiority of CRNMF when dealing 
with time-varying noise patterns is demonstrated through a 
comprehensive experiment. 

1. Performance for Different Divergence Measures 

Extensive experiments show that the generalized KL 
divergence achieves the best results (in terms of SDR) in 
speech separation tasks. In Fig. 2, we show two groups of 
experimental results, for clean speech degraded by machinegun 
noise (Fig. 2(a)) and f16 (Fig. 2(b)), at 5 dB input SNR. 

As shown, the generalized KL divergence reaches the 
highest SDR value in both situations, and does so with a 
moderate choice of the regularization parameter. Using either 
IS divergence or Euclidean distance results in a significant 
performance loss when compared with KL divergence. In the 
machinegun noise case (top panel), IS divergence produced 
better results than Euclidean distance; the bottom panel, 
however, shows that a dramatically different behavior occurs in 
the f16 noise case. This is because the speech spectrogram 
contaminated by machinegun noise has a larger dynamic range 
than the spectrogram contaminated by f16 noise, and the IS 
cost function is less sensitive to large dynamic ranges than the 
Euclidean distance, because of its ratio term. As shown, the KL 
divergence can produce better results, as it provides relatively 
good compromises throughout the various noise types. 

2. Speech Separation Performance of RNMF 

To evaluate the speech separation performance of RNMF, 
we calculate the average SDR for all noise types at several 
input SNRs, ranging from –5 dB to 10 dB. The results obtained  

Fig. 2. SDR values of the separation results for the three cost 
functions: (a) signal degradation due to machinegun noise 
at 5 dB of input SNR and (b) signal degradation due to 
f16 noise, with the same input SNR. 

0 0.5 1.0 1.5
2

4

6

8

10

12

14

Euclidean
KL 

IS 

λ 

λ 

S
D

R
 (

dB
) 

S
D

R
 (

dB
) 

(a) 

(b) 

0 0.5 1.0 1.5
2

3

4

5

6

7

8

9

10

11

Euclidean 
KL 

IS 

 
with RPCA [7] are taken as a baseline. 

As shown in Fig. 3, the proposed RNMF approach 
outperformed the recently proposed RPCA method, as a result 
of the non-negative constraints imposed on the component 
matrices. Once more, the KL divergence exhibited the best 
performance among the three cost functions, with 1.60 dB and 
1.55 dB SDR improvements over the Euclidean distance and 
IS divergence, respectively. The IS divergence yielded results 
comparable with those of the Euclidean distance, as seen by 
their SDR curves in Fig. 3. 

As mentioned before, we also calculated the SegSNR and 
PESQ improvements obtained with different divergence 
measures; the obtained results are presented in Table 1. In this 
table, we use ELD, KLD, and ISD to represent the Euclidean 
distance, generalized KL, and IS divergence, respectively. The 
NMF results (a supervised method) can be viewed as the upper 
bound of performance for the unsupervised methods, which  
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Fig. 3. Average SDR (over all noise types), at different SNR levels.
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Table 1. SegSNR and PESQ improvements. 

Metrics SegSNR improv. (dB) PESQ improv. (dB) 

SNR –5 0 5 10 –5 0 5 10 

NMF 4.8 4.5 3.9 3.6 0.31 0.40 0.44 0.47

RPCA 3.1 3.0 2.7 2.2 0.09 0.13 0.21 0.26

ELD 3.6 3.7 2.7 2.4 0.16 0.21 0.28 0.30

KLD 3.8 3.5 3.3 2.9 0.19 0.24 0.28 0.36

ISD 3.4 3.2 2.8 2.2 0.14 0.23 0.24 0.25

 

results from the fact that it uses prior knowledge not available to 
the unsupervised methods. From the results in Table 1, we can 
draw a conclusion similar to the ones obtained from the previous 
experiments: the generalized KL divergence seems to exhibit the 
best performance in the context of speech enhancement. 

3. CRNMF and Time-Varying Noise Patterns 

To evaluate the performance of the proposed convolutional 
RNMF, we conducted experiments on synthesized data, which 
was produced by first generating periodic background noise, 
and then adding it to clean speech, at 5 dB input SNR; a 
spectrogram of the resulting mixture is shown in Fig. 4(a). 
From this figure, we can see there is a large overlap between 
the noise and speech spectrograms. Moreover, the noise is 
time-varying, and repeats during the whole time interval. These 
properties make the unsupervised speech separation problem a 
challenging one. Given that the background noise is not exactly 
low-rank (it cannot be represented by a linear combination of 
only a few vectors), conventional methods based on sparse and 
low-rank decomposition—such as RPCA and RNMF— 
would fail to cope with this situation. 

Considering the time continuity of the noise spectrogram, 

 

Fig. 4. CRNMF performance with time-varying background 
noise: (a) spectrogram of the mixture signal, in which a 
periodic time-varying noise signal (each period spans 16 
frames of the spectrogram) is added to the speech signal, 
at 5 dB input SNR, (b) speech spectrogram, (c) noise 
spectrogram, and (d) non-negative basis learned by 
CRNMF. 
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CRNMF was applied to this mixture signal and evaluated; its 
source separation performance is shown in Figs. 4(b) and 4(c). 
Given the analysis results obtained in Sections IV.1 and IV.2, 
KL divergence was chosen as a cost function (rather than IS 
divergence or Euclidean distance). 

The obtained experimental results show that the time span of 
the noise pattern (T in Section II.3) has some impact on the 
performance of convolutional RNMF, with the best 
performance being observed when T assumes the exact value 
of the noise pattern duration. 

V. Conclusion 

In this paper, we investigated the robust non-negative matrix 
factorization (RNMF) approach with β-divergence. By 
imposing non-negativity constrains, the proposed method 
outperformed the state-of-the-art unsupervised baseline method 
in speech separation tasks. Experimental results showed that 
the Kullback-Leibler divergence seems more suitable to be 
used as a cost function than both the Itakura-Saito divergence 
and the Euclidean distance. Moreover, we extended the idea of 
RNMF to a convolutional version, which is capable of 
describing the time-varying spectral characteristics of dynamic 
noises. Experiments showed the effectiveness of the proposed 
convolutional RNMF algorithm. 
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Appendix. Derivation of CRNMF with Generalized 
KL Divergence 

Let us review the objective function of (15), and focus on the 
special case of generalized KL divergence. The objective 
function can be rewritten as: 
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where matrices are denoted with bold capital letters, and their 
respective elements by corresponding lowercase letters. Note 
that 
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and 
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Therefore, the derivative of the objective function with 
respect to , ( ),i kW t    ,k jH   , and ,i jS    can be calculated as 

follows: 
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Equations (A4) to (A6) can be split into positive and 
negative parts, and the following update rules can hence be 
obtained: 
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These equations can be rewritten in matrix form as: 
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and 
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Note that (16) to (18) are the same as (A10) to (A12) when  
β = 1. The results for the Euclidean distance and Itakura-Saito 
divergence can be similarly derived. 
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