• Title/Summary/Keyword: probiotic starter

Search Result 64, Processing Time 0.031 seconds

Isolation and Characterization of a Protease-Producing Bacterium, Bacillus amyloliquefaciens P27 from Meju as a Probiotic Starter for Fermented Meat Products

  • Lee, Mi-Sun;Lee, Na-Kyoung;Chang, Kyung-Hoon;Choi, Shin-Yang;Song, Chi-Kwang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.804-810
    • /
    • 2010
  • This study was performed to select protease-producing Bacillus sp. as a potential probiotic starter for fermented meat products. In order to isolate protease-producing bacterium from meju, measured the diameter of the clear zone on agar plate (TSA, 1% (w/v) skim milk) and analyzed for intracellular protease activity, then 10 Bacillus-like strains were isolated. Three Bacillus-like strains (P19, P27, and P33) among 10 strains were able to tolerate in acidic condition (TSB, pH 2.5, 2 h incubation). These 3 strains were showed antimicrobial activity against food-borne pathogenic bacteria. These vegetative cells of 3 strains were showed a survival rate of 0.04% to 0.08% under the artificial gastric acidic condition (TSB, pH 2.5 with 1% (w/v) pepsin), but spore-forming cells were 56.29% to 84.77%. Vegetative cells of 3 strains were the least bile-resistant, while spore-forming cells of 3 strains showed higher survival rate more than 76% under artificial bile condition (TSB, 0.1% (w/v) oxgall bile). In these strains, P27 strain was finally selected as a good probiotic strain. P27 strain was tentatively identified as Bacillus amyloliquefaciens by API CHB kit and 16S rDNA sequence analysis. The results of this study suggest that B. amyloliquefaciens P27 can be used as a potential probiotic starter for fermented meat product.

Evaluation of Microencapsulated Local Isolates Lactobacillus casei 97/L3 and Lactobacillus delbrueckii 94/L4 for Improved Probiotic and Yogurt Starter Culture Application

  • Juvi, Denny;Sthefanie, Sthefanie;Sugata, Marcelia;Lucy, Jap;Andrian, Danish;Rizkinata, Denny;Michelle, Michelle;Jan, Tan Tjie
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.211-219
    • /
    • 2019
  • The effect of microencapsulation on previously isolated Lactobacillus delbrueckii 94/L4 as starter culture for yogurt, and Lactobacillus casei 97/L3 as a probiotic candidate was investigated. Preliminary results showed that L. delbrueckii 94/L4 exhibited tolerance to bile, unlike L. casei 97/L3. Freeze drying significantly (p < 0.05) reduced the viability of both isolates by log 0.71-2.70. Although microencapsulation preserved the viability of L. casei 97/L3 cells exposed to simulated gastrointestinal tract conditions for 120 min, it did not impart significant (p < 0.05) protection against loss of viability during the first 30 min of exposure. Conversely, microencapsulated L. delbrueckii 94/L4 with the addition of Streptococcus thermophilus 24/S1 as starter culture was successfully incorporated into milk to form yogurt, yielding a significantly (p < 0.05) improved product quality.

Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams

  • Kim, Young Joo;Park, Sung Yong;Lee, Hong Chul;Yoo, Seung Seok;Oh, Sejong;Kim, Kwang Hyun;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.122-130
    • /
    • 2016
  • The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham.

Characterization and ACE Inhibitory Activity of Fermented Milk with Probiotic Lactobacillus plantarum K25 as Analyzed by GC-MS-Based Metabolomics Approach

  • Zhang, Min;Jiang, Yunyun;Cai, Miao;Yang, Zhennai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.903-911
    • /
    • 2020
  • Addition of probiotics to yogurt with desired health benefits is gaining increasing attention. To further understand the effect of probiotic Lactobacillus plantarum on the quality and function of fermented milk, probiotic fermented milk (PFM) made with probiotic L. plantarum K25 and yogurt starter (L. delbrueckii ssp. bulgaricus and Streptococcus thermophilus) was compared with the control fermented milk (FM) made with only the yogurt starter. The probiotic strain was shown to survive well with a viable count of 7.1 ± 0.1 log CFU/g in the PFM sample after 21 days of storage at 4℃. The strain was shown to promote formation of volatiles such as acetoin and 2,3-butanediol with milk fragrance, and it did not cause post-acidification during refrigerated storage. Metabolomics analysis by GC-MS datasets coupled with multivariate statistical analysis showed that addition of L. plantarum K25 increased formation of over 20 metabolites detected in fermented milk, among which γ-aminobutyric acid was the most prominent. Together with several other metabolites with relatively high levels in fermented milk such as glyceric acid, malic acid, succinic acid, glycine, alanine, ribose, and 1,3-dihydroxyacetone, they might play important roles in the probiotic function of L. plantarum K25. Further assay of the bioactivity of the PFM sample showed significant (p < 0.05) increase of ACE inhibitory activity from 22.3% at day 1 to 49.3% at day 21 of the refrigerated storage. Therefore, probiotic L. plantarum K25 could be explored for potential application in functional dairy products.

Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a Probiotic Starter for Sourdough Fermentation

  • Park, Da Min;Bae, Jae-Han;Kim, Min Soo;Kim, Hyeontae;Kang, Shin Dal;Shim, Sangmin;Lee, Deukbuhm;Seo, Jin-Ho;Kang, Hee;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1729-1738
    • /
    • 2019
  • In sourdough fermentation, lactic acid bacteria perform important roles in the production of volatile and antimicrobial compounds, and exerting health-promoting effects. In this study, we report the probiotic properties and baking characteristics of Lactobacillus plantarum SPC-SNU 72-2 isolated from kimchi. This strain is safe to use in food fermentation as it does not carry genes for biogenic amine production (i.e., hdc, tdc, and ldc) and shows no β-hemolytic activity against red blood cells. The strain is also stable under simulated human gastrointestinal conditions, showing tolerance to gastric acid and bile salt, and adheres well to colonic epithelial cells. Additionally, this strain prevents pathogen growth and activates mouse peritoneal macrophages by inducing cytokines such as tumor necrosis factor-α, interleukin (IL)-6, and IL-12. Furthermore, the strain possesses good baking properties, providing rich aroma during dough fermentation and contributing to the enhancement of bread texture. Taken together, L. plantarum SPC-SNU 72-2 has the properties of a good starter strain based on the observation that it improves bread flavor and texture while also providing probiotic effects comparable with commercial strains.

EFFECT OF DIRECT-FED MICROORGANISMS ON BROILER GROWTH PERFORMANCE AND LITTER AMMONIA LEVEL

  • Chiang, S.H.;Hsieh, W.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.2
    • /
    • pp.159-162
    • /
    • 1995
  • Broilers were fed diets supplemented with various levels of a probiotic (mixture of the following direct-fed microorganisms: Lactobacillus, Bacillus, and Streptococcus). Growth performance, abdominal fat, excreta, and litter ammonia level were determined. The results showed that birds fed the probiotic-supplemented diets had better weight gain (p < 0.01) and feed conversion (gain:feed;p < 0.12) when compared to the birds fed the unsupplemented diet. No differences in feed intake and abdominal fat were observed among birds fed the different experimental diets. Excreta (p < 0.05) and litter (p < 0.01) ammonia levels were reduced by dietary probiotic supplementation. A dosage of 0.25 g of the probiotic/kg of diet is needed to maiximize growth performance during both the starter and finisher periods. A higher dosage (approximate 0.5 g/kg) is needed to minimize litter ammonia production.

Characteristics of Kwark Cheese Supplemented with Bifidobacterium longum KACC 91563

  • Song, Minyu;Park, Won Seo;Yoo, Jayeon;Han, Gi-Sung;Kim, Bu-Min;Seong, Pil-Nam;Oh, Mi-Hwa;Kim, Kyung-Woon;Ham, Jun-Sang
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.773-779
    • /
    • 2017
  • The effect of addition of the probiotic Bifidobacterium longum KACC 91563 on the chemical and sensory properties of Kwark cheese produced using CHN-11 as a cheese starter were investigated. The addition of B. longum KACC 91563 to Kwark cheese did not change the composition or pH value of the cheese, compared with control. B. longum KACC 91563 survived at a level of 7.58 Log CFU/g and did not have any negative effect on survival of the cheese starter. A sensory panel commented that the addition of B. longum KACC 91563 made Kwark cheese more desirable to consumers, and that the probiotic supplementation had no effect on perceived taste. Thus, B. longum KACC 91563 can be used for inclusion of probiotic bacteria in cheese.

Evaluation of the Probiotic Potential of Bacillus polyfermenticus CJ6 Isolated from Meju, a Korean Soybean Fermentation Starter

  • Jung, Ji Hye;Lee, Myung Yul;Chang, Hae Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1510-1517
    • /
    • 2012
  • To evaluate the probiotic potential of Bacillus polyfermenticus CJ6 isolated from meju, a Korean traditional soybean fermentation starter, its functionality and safety were investigated. B. polyfermenticus CJ6 was sensitive to all antibiotics listed by the European Food Safety Authority. The strain was also non-hemolytic, carried no emetic toxin or enterotoxin genes, and produced no enterotoxins. The resistance of B. polyfermenticus CJ6 vegetative cells and spores to simulated gastrointestinal conditions was high (60-100% survival rate). B. polyfermenticus CJ6 produced high amounts (0.36 g as a purified lyophilized form) of ${\gamma}$-polyglutamic acid (PGA). We speculate that the improved cell viability and the production of ${\gamma}$-PGA have a significant correlation. Adhesion of the strain to Caco-2 and HT-29 cells was weaker than that of the reference strain (Lb. rhamnosus GG), but it was comparable to or stronger than those of reported Bacillus spp. When B. polyfermenticus CJ6 spores were given orally to mice, the number of cells excreted in the feces was 4-fold higher than the original inocula. This suggests the inoculated spores propagated within the intestinal tract of the mice. This idea was confirmed by field emission scanning electron microscopy, which revealed directly that B. polyfermenticus CJ6 cells germinated and adhered within the gastrointestinal tract of mice. Taken together, these findings suggest that B. polyfermenticus CJ6 has probiotic potential for both human consumption and use in animal feeds.

Genomic Analysis of Dairy Starter Culture Streptococcus thermophilus MTCC 5461

  • Prajapati, Jashbhai B.;Nathani, Neelam M.;Patel, Amrutlal K.;Senan, Suja;Joshi, Chaitanya G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.459-466
    • /
    • 2013
  • The lactic acid bacterium Streptococcus thermophilus is widely used as a starter culture for the production of dairy products. Whole-genome sequencing is expected to utilize the genetic basis behind the metabolic functioning of lactic acid bacterium (LAB), for development of their use in biotechnological and probiotic applications. We sequenced the whole genome of Streptococcus thermophilus MTCC 5461, the strain isolated from a curd source, by 454 GS-FLX titanium and Ion Torrent PGM. We performed comparative genome analysis using the local BLAST and RDP for 16S rDNA comparison and by the RAST server for functional comparison against the published genome sequence of Streptococcus thermophilus CNRZ 1066. The whole genome size of S. thermophilus MTCC 5461 is of 1.73Mb size with a GC content of 39.3%. Streptococcal virulence-related genes are either inactivated or absent in the strain. The genome possesses coding sequences for features important for a probiotic organism such as adhesion, acid tolerance, bacteriocin production, and lactose utilization, which was found to be conserved among the strains MTCC 5461 and CNRZ 1066. Biochemical analysis revealed the utilization of 17 sugars by the bacterium, where the presence of genes encoding enzymes involved in metabolism for 16 of these 17 sugars were confirmed in the genome. This study supports the facts that the strain MTCC 5461 is nonpathogenic and harbors essential features that can be exploited for its probiotic potential.

Utilization of Probiotic Starter Cultures for the Manufacture of Low-fat Functional Fermented Sausages (저지방 기능성 발효소시지의 제조를 위한 복합 유산균주의 이용)

  • Kim, Young-J.;Lee, Hong-C.;Park, Sung-Y.;Park, Sun-Y.;Oh, Se-Jong;Chin, Koo-B.
    • Food Science of Animal Resources
    • /
    • v.28 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • This study was performed to evaluate the physico-chemical properties of fermented sausages containing probiotic starter cultures (LK-30 plus, Lactobacillus plantarum 155 and 167, and Pediococcus damnosus L12) with reduced fat levels, and to determine the optimum condition for the manufacture of these products. Although low-fat fermented sausages were reduced fat content at the amount of 90% and the ripening time by 1-2 weeks, as compared to regular-fat counterpart, they became harder and had many winkles outside due to the extreme drying. In addition, fat level in fermented sausages affected the composition and shear force values. During ripening, pH, lightness and yellowness values tended to decrease, however, microbial counts of inoculated lactic acid bacteria were increased up to $10^8-10^9cfu/g$ within 3 days and remained constant thereafter. Low-fat fermented sausages had higher microbial counts than regular-fat ones. Although the inoculated probiotic starter cultures alone had the functional properties, such as cholesterol reduction, anti-high blood pressure and antimicrobial activity, they did not have distinctive characteristics in the fermented sausages. Based on these results, the low-fat fermented sausages were successfully manufactured, but a little bit increased fat level and improved functional properties in the fermented sausages would be required to have better quality as compared to regular-fat counterparts.