Browse > Article
http://dx.doi.org/10.4014/jmb.1205.05049

Evaluation of the Probiotic Potential of Bacillus polyfermenticus CJ6 Isolated from Meju, a Korean Soybean Fermentation Starter  

Jung, Ji Hye (Department of Food and Nutrition, Kimchi Research Center, Chosun University)
Lee, Myung Yul (Department of Food and Nutrition, Kimchi Research Center, Chosun University)
Chang, Hae Choon (Department of Food and Nutrition, Kimchi Research Center, Chosun University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.11, 2012 , pp. 1510-1517 More about this Journal
Abstract
To evaluate the probiotic potential of Bacillus polyfermenticus CJ6 isolated from meju, a Korean traditional soybean fermentation starter, its functionality and safety were investigated. B. polyfermenticus CJ6 was sensitive to all antibiotics listed by the European Food Safety Authority. The strain was also non-hemolytic, carried no emetic toxin or enterotoxin genes, and produced no enterotoxins. The resistance of B. polyfermenticus CJ6 vegetative cells and spores to simulated gastrointestinal conditions was high (60-100% survival rate). B. polyfermenticus CJ6 produced high amounts (0.36 g as a purified lyophilized form) of ${\gamma}$-polyglutamic acid (PGA). We speculate that the improved cell viability and the production of ${\gamma}$-PGA have a significant correlation. Adhesion of the strain to Caco-2 and HT-29 cells was weaker than that of the reference strain (Lb. rhamnosus GG), but it was comparable to or stronger than those of reported Bacillus spp. When B. polyfermenticus CJ6 spores were given orally to mice, the number of cells excreted in the feces was 4-fold higher than the original inocula. This suggests the inoculated spores propagated within the intestinal tract of the mice. This idea was confirmed by field emission scanning electron microscopy, which revealed directly that B. polyfermenticus CJ6 cells germinated and adhered within the gastrointestinal tract of mice. Taken together, these findings suggest that B. polyfermenticus CJ6 has probiotic potential for both human consumption and use in animal feeds.
Keywords
Probiotic; Bacillus polyfermenticus; safety; functional properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Salkinoja-Salonen, M. S., R. Vuorio, M. A. Andersson, P. Kampfer, M. C. Andersson, T. Honkanen-Buzalski, and A. C. Scoging. 1999. Toxigenic strains of Bacillus licheniformis related to food poisoning. Appl. Environ. Microbiol. 65: 4637-4645.
2 Sergeev, N., M. Distler, M. Vargas, V. Chizhikov, K. E. Herold, and A. Rasooly. 2006. Microarray analysis of Bacillus cereus group virulence factors. J. Microbiol. Methods 65: 488-502.   DOI   ScienceOn
3 Shih, I. L. and V. T. Van. 2001. The production of poly- (gamma-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79: 207-225   DOI   ScienceOn
4 Sorokulova, I. B., I. V. Pinchuk, M. Denayrolles, I. G. Osipova, J. M. Huang, S. M. Cutting, and M. C. Urdaci. 2008. The safety of two Bacillus probiotic strains for human use. Dig. Dis. Sci. 53: 954-963.   DOI   ScienceOn
5 Spinosa, M. R., T. Braccini, E. Ricca, M. De Felice, L. Morelli, G. Pozzi, and M. R. Oggioni. 2000. On the fate of ingested Bacillus spores. Res. Microbiol. 151: 361-368.   DOI   ScienceOn
6 Tam, N. K., N. Q. Uyen, H. A. Hong, Le H. Duc, T. T. Hoa, C. R. Serra, et al. 2006. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188: 2692-2700.   DOI   ScienceOn
7 Tanimoto, H., H. Sato, M. Karasawa, K. Iwasaki, A. Oshima, and S. Adachi. 2000. Feed composition containing poly- ${\gamma}$-glutamic acid. Japanese Patent WO9635339.
8 Wang, B., J. Li, Q. Li, H. Zhang, and N. Li. 2009. Isolation of adhesive strains and evaluation of the colonization and immune response by Lactobacillus plantarum L2 in the rat gastrointestinal tract. Int. J. Food Microbiol. 132: 59-66.   DOI   ScienceOn
9 Yuksekdag, Z. and B. Aslim. 2010. Assessment of potential probiotic and starter properties of Pediococcus spp. isolated from Turkish-type fermented sausages (sucuk). J. Microbiol. Biotechnol. 20: 161-168.   DOI   ScienceOn
10 Ehling-Schulz, M., N. Vukov, A. Schulz, R. Shaheen, M. Andersson, E. Martlbauer, and S. Scherer. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105-113.   DOI   ScienceOn
11 Fazzini, M. M., R. Schuch, and V. A. Fischetti. 2010. A novel spore protein, ExsM, regulates formation of the exosporium in Bacillus cereus and Bacillus anthracis and affects spore size and shape. J. Bacteriol. 192: 4012-4021.   DOI   ScienceOn
12 Goto, A. and M. Kunioka. 1992. Biosynthesis and hydrolysis of poly(${\gamma}$-glutamic acid) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 56: 1031-1035.   DOI
13 Guinebretiere, M. H., V. Broussolle, and C. Nguyen-The. 2002. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40: 3053-3056.   DOI   ScienceOn
14 Hoa, N. T., L. Baccigalupi, A. Huxham, A. Smertenko, P. H. Van, S. Ammendola, et al. 2000. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl. Environ. Microbiol. 66: 5241-5247.   DOI   ScienceOn
15 Hoa, T. T., Le H. Duc, R. Isticato, L. Baccigalupi, E. Ricca, P. H. Van, and S. M. Cutting. 2001. Fate and dissemination of Bacillus subtilis spores in a murine model. Appl. Environ. Microbiol. 67: 3819-3823.   DOI   ScienceOn
16 Hong, H. A., Le H. Duc, and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29: 813-835.
17 Kalchayanand, N., P. Dunne, A. Sikes, and B. Ray. 2004. Viability loss and morphology change of foodborne pathogens following exposure to hydrostatic pressures in the presence and absence of bacteriocins. Int. J. Food Microbiol. 91: 91-98.   DOI   ScienceOn
18 Hong, H. A., J. M. Huang, R. Khaneja, L. V. Hiep, M. C. Urdaci, and S. M. Cutting. 2008. The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J. Appl. Microbiol. 105: 510-520.   DOI   ScienceOn
19 Jung, J. H. and H. C. Chang. 2009. Antifungal activity of Bacillus polyfermenticus CJ6 isolated from Meju. J. Kor. Soc. Food Sci. Nutr. 38: 509-516.   DOI   ScienceOn
20 Jung, J. H. and H. C. Chang. 2011. Characterization of antibacterial compounds from Bacillus polyfermenticus CJ6 and its growth inhibition effect on food-borne pathogens. J. Kor. Soc. Food Sci. Nutr. 40: 903-911.   DOI   ScienceOn
21 Kim, J. B., J. M. Kim, S. H. Cho, H. S. Oh, N. J. Choi, and D. H. Oh. 2011. Toxin genes profiles and toxin production ability of Bacillus cereus isolated from clinical and food samples. J. Food Sci. 76: T25-T29.
22 Koransky, J. R., S. D. Allen, and V. R. Dowell Jr. 1978. Use of ethanol for selective isolation of spore-forming microorganisms. Appl. Environ. Microbiol. 35: 762-765.
23 Laparra, J. M. and Y. Sanz. 2009. Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett. Appl. Microbiol. 49: 695-701.   DOI   ScienceOn
24 Bae, Y. D. 2002. Tradition and change of ethnic cuisine through the Doenjang. Kor. Ethnic 35: 51-78.
25 Bajaj, I. and R. Singhal. 2011. Poly (glutamic acid) - An emerging biopolymer of commercial interest. Bioresour. Technol. 102: 5551-5561.   DOI   ScienceOn
26 Cenci, G., F. Trotta, and G. Caldini. 2006. Tolerance to challenges miming gastrointestinal transit by spores and vegetative cells of Bacillus clausii. J. Appl. Microbiol. 101: 1208-1215.   DOI   ScienceOn
27 Barbosa, T. M., C. R. Serra, R. M. La Ragione, M. J. Woodward, and A. O. Henriques. 2005. Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl. Environ. Microbiol. 71: 968-978.   DOI   ScienceOn
28 Bohin, J. P., D. Rigomier, and P. Schaeffer. 1976. Ethanol sensitivity of sporulation in Bacillus subtilis: A new tool for the analysis of the sporulation process. J. Bacteriol. 127: 934-940.
29 Casula, G. and S. M. Cutting. 2002. Bacillus probiotics: Spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 68: 2344-2352.   DOI   ScienceOn
30 Cutting, S. M. 2011. Bacillus probiotics. Food Microbiol. 28: 214-220.   DOI   ScienceOn
31 Duc, Le H., H. A. Hong, T. M. Barbosa, A. O. Henriques, and S. M. Cutting. 2004. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70: 2161-2171.   DOI   ScienceOn
32 Duc, Le H., H. A. Hong, and S. M. Cutting. 2003. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21: 4215-4224.   DOI   ScienceOn
33 European Food Safety Authority (EFSA). 2005. Opinion of the scientific committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives. EFSA J. 226: 1-12.
34 European Food Safety Authority (EFSA). 2008. Technical guidance prepared by the Panel on Additives and Products or Substances used in the assessment of bacterial resistance to antibiotics of human and veterinary importance. EFSA J. 732: 1-15.
35 Rowan, N. J., K. Deans, J. G. Anderson, C. G. Gemmell, I. S. Hunter, and T. Chaithong. 2001. Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. Appl. Environ. Microbiol. 67: 3873-3881.   DOI   ScienceOn
36 Lee, K. H., K. D. Jun, W. S. Kim, and H. D. Paik. 2001. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146-151.   DOI   ScienceOn
37 Margolles, A., B. Mayo, and P. Ruas-Madiedo. 2009. Screening identification, and characterization of Lactobacillus and Bifidobacterium strains, pp. 4-43. In K. Nomoto, S. Salminen, and Y. K. Lee (eds.). Handbook of Probiotics and Prebiotics. John Willey & Sons Inc., New Jersey.
38 Mazza, P. 1994. The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll. Chim. Farm. 133: 3-18.
39 Saarela, M., G. Morgensen, R. Fondén, J. Mattö, and T. Mattila-Sandholm. 2000. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 84: 197-215.   DOI   ScienceOn