Browse > Article
http://dx.doi.org/10.4014/jmb.1210.10030

Genomic Analysis of Dairy Starter Culture Streptococcus thermophilus MTCC 5461  

Prajapati, Jashbhai B. (Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University)
Nathani, Neelam M. (Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University)
Patel, Amrutlal K. (Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University)
Senan, Suja (Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University)
Joshi, Chaitanya G. (Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.4, 2013 , pp. 459-466 More about this Journal
Abstract
The lactic acid bacterium Streptococcus thermophilus is widely used as a starter culture for the production of dairy products. Whole-genome sequencing is expected to utilize the genetic basis behind the metabolic functioning of lactic acid bacterium (LAB), for development of their use in biotechnological and probiotic applications. We sequenced the whole genome of Streptococcus thermophilus MTCC 5461, the strain isolated from a curd source, by 454 GS-FLX titanium and Ion Torrent PGM. We performed comparative genome analysis using the local BLAST and RDP for 16S rDNA comparison and by the RAST server for functional comparison against the published genome sequence of Streptococcus thermophilus CNRZ 1066. The whole genome size of S. thermophilus MTCC 5461 is of 1.73Mb size with a GC content of 39.3%. Streptococcal virulence-related genes are either inactivated or absent in the strain. The genome possesses coding sequences for features important for a probiotic organism such as adhesion, acid tolerance, bacteriocin production, and lactose utilization, which was found to be conserved among the strains MTCC 5461 and CNRZ 1066. Biochemical analysis revealed the utilization of 17 sugars by the bacterium, where the presence of genes encoding enzymes involved in metabolism for 16 of these 17 sugars were confirmed in the genome. This study supports the facts that the strain MTCC 5461 is nonpathogenic and harbors essential features that can be exploited for its probiotic potential.
Keywords
Streptococcus thermophilus; dairy; bioinformatics; genome analysis; coding sequences; fermentation profile; probiotic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Salminen, S., J. Nurmi, and M. Gueimonde. 2005. The genomics of probiotic intestinal microorganisms. Genome Biol. 6: 225.   DOI
2 Prajapati, J. B., C. D. Khedkar, J. Chitra, S. Suja, V. Mishra, V. Sreeja, et al. 2012. Whole-genome shotgun sequencing of Lactobacillus rhamnosus MTCC 5462, a strain with probiotic potential. J. Bacteriol. 194: 1264-1265.   DOI   ScienceOn
3 Rodionov, D. A. and M. S. Gelfand. 2005. Identification of a bacterial regulatory system for ribonucleotide reductases by phylogenetic profiling. Trends Genet. 21: 385-389.   DOI   ScienceOn
4 Roussel, Y., F. Bourgoin, G. Guedon, M. Pebay, and B. Decaris. 1997. Analysis of the genetic polymorphism between three Streptococcus thermophilus strains by comparing their physical and genetic organization. Microbiology 143 (Pt 4): 1335-1343.   DOI   ScienceOn
5 Saxena, A. 1990. Performance evaluation of Streptococcus thermophilus strains in skim milk dahi manufacture with reference to its microbiology and keeping quality. Dissertation. Gujarat Agricultural University, S. K. Nagar, India.
6 Vinderola, C. G., P. Mocchiutti, and J. A. Reinheimer. 2002. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products. J. Dairy Sci. 85: 721-729.   DOI   ScienceOn
7 Vogel, R. F., M. Pavlovic, M. A. Ehrmann, A. Wiezer, H. Liesegang, S. Offschanka, et al. 2011. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb. Cell Fact 10 (Suppl 1): S6.   DOI
8 Xu, P., X. Ge, L. Chen, X. Wang, Y. Dou, J. Z. Xu, et al. 2011. Genome-wide essential gene identification in Streptococcus sanguinis. Sci. Rep. 1: 125.
9 Coenye, T. and P. Vandamme. 2003. Extracting phylogenetic information from whole-genome sequencing projects: The lactic acid bacteria as a test case. Microbiology 149: 3507-3517.   DOI   ScienceOn
10 Altermann, E., W. M. Russell, M. A. Azcarate-Peril, R. Barrangou, B. L. Buck, O. McAuliffe, et al. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. USA 102: 3906-3912.   DOI   ScienceOn
11 Bolotin, A., B. Quinquis, P. Renault, A. Sorokin, S. D. Ehrlich, S. Kulakauskas, et al. 2004. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 22: 1554-1558.   DOI   ScienceOn
12 Dave, R. I., J. M. Dave, and S. S. Sannabhadti. 1993. Microbial changes during manufacture and storage of buffalo milk dahi. J. Dairy. Foods Home Sci. 12: 83-88.
13 Burton, J. P., P. A. Wescombe, C. J. Moore, C. N. Chilcott, and J. R. Tagg. 2006. Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl. Environ. Microbiol. 72: 3050-3053.   DOI   ScienceOn
14 Dave, R. I. 1991. Standardizing conditions for pilot scale production and storage of buffalo milk dahi using selected strains of Streptococcus thermophilus. Dissertation. Gujarat Agricultural University, S. K. Nagar, India.
15 Dave, R. I., J. M. Dave, and S. S. Sannabhadti. 1993. Effect of starter culture and total solids on $\beta$-D-galactosidase activity during manufacture and storage of dahi. Indian J. Dairy Sci. 46: 544-546.
16 Garault, P., C. Letort, V. Juillard, and V. Monnet. 2000. Branched-chain amino acid biosynthesis is essential for optimal growth of Streptococcus thermophilus in milk. Appl. Environ. Microbiol. 66: 5128-5133.   DOI
17 Elli, M., M. L. Callegari, S. Ferrari, E. Bessi, D. Cattivelli, S. Soldi, et al. 2006. Survival of yogurt bacteria in the human gut. Appl. Environ. Microbiol. 72: 5113-5117.   DOI   ScienceOn
18 Falentin, H., S. M. Deutsch, G. Jan, V. Loux, A. Thierry, S. Parayre, et al. 2010. The complete genome of Propionibacterium freudenreichii CIRM-BIA1, a hardy actinobacterium with food and probiotic applications. PLoS One 5: e11748.   DOI   ScienceOn
19 Fath, M. J., H. K. Mahanty, and R. Kolter. 1989. Characterization of a purF operon mutation which affects colicin V production. J. Bacteriol. 171: 3158-3161.
20 Hao, P., H. Zheng, Y. Yu, G. Ding, W. Gu, S. Chen, et al. 2011. Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production. PLoS One 6: e15964.   DOI   ScienceOn
21 Hiller, N. L., B. Janto, J. S. Hogg, R. Boissy, S. Yu, E. Powell, et al. 2007. Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: Insights into the pneumococcal supragenome. J. Bacteriol. 189: 8186-8195.   DOI   ScienceOn
22 Klaenhammer, T. R., M. A. Azcarate-Peril, E. Altermann, and R. Barrangou. 2007. Influence of the dairy environment on gene expression and substrate utilization in lactic acid bacteria. J. Nutr. 137: 748S-750S.
23 Iyer, R., S. K. Tomar, S. Kapil, J. Mani, and S. Rameshwar. 2010. Probiotic properties of folate producing Streptococcus thermophilus strains. Food Res. Int. 43: 8.   DOI   ScienceOn
24 Khalil, R. 2009. Evidence for probiotic potential of a capsularproducing Streptococcus thermophilus CHCC 3534 strain. Pol. J. Microbiol. 58: 49-55.   DOI   ScienceOn
25 Lebeer, S., J. Vanderleyden, and S. C. De Keersmaecker. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72: 728-764.   DOI   ScienceOn
26 Krastel, K., D. B. Senadheera, R. Mair, J. S. Downey, S. D. Goodman, and D. G. Cvitkovitch. 2010. Characterization of a glutamate transporter operon, glnQHMP, in Streptococcus mutans and its role in acid tolerance. J. Bacteriol. 192: 984-993.   DOI   ScienceOn
27 Kumar, R. 1990. Standardizing conditions for pilot scale production and storage of cow milk dahi using Streptococcus thermophilus strains as starter culture - some microbiological aspects. Dissertation. Gujarat Agricultural University, S. K. Nagar, India.
28 Mayo, B., D. van Sinderen, and M. Ventura. 2008. Genome analysis of food grade lactic acid-producing bacteria: From basics to applications. Curr. Genomics 9: 169-183.   DOI   ScienceOn
29 Pastink, M. I., B. Teusink, P. Hols, S. Visser, W. M. de Vos, and J. Hugenholtz. 2009. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl. Environ. Microbiol. 75: 3627-3633.   DOI   ScienceOn
30 Postma, P. W., J. W. Lengeler, and G. R. Jacobson. 1993. Phosphoenolpyruvate: Carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543-596.
31 Prajapati, J. B., C. D. Khedkar, J. Chitra, S. Suja, V. Mishra, V. Sreeja, et al. 2011. Whole-genome shotgun sequencing of an Indian-origin Lactobacillus helveticus strain, MTCC 5463, with probiotic potential. J. Bacteriol. 193: 4282-4283.   DOI   ScienceOn