• 제목/요약/키워드: probe design

검색결과 476건 처리시간 0.024초

대면적 플랫폼을 갖는 Probe-based Storage Device(PSD)용 정전형 2축 MEMS 스테이지의 설계 (Design of an Electrostatic 2-axis MEMS Stage having Large Area Platform for Probe-based Storage Devices)

  • 정일진;전종업
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.82-90
    • /
    • 2006
  • Recently the electrostatic 2-axis MEMS stages have been fabricated for the purpose of an application to PSD (Probe-based Storage Device). However, all of the components(platform, comb electrodes, springs, anchors, etc.) in those stages are placed in-plane so that they have low areal efficienceis, which is undesirable as data storage devices. In this paper, we present a novel structure of an electrostatic 2-axis MEMS stage that is characterized by having large area platform. for obtaining large area efficiency, the actuator part consisting of mainly comb electrodes and springs is placed right below the platform. The structure and operational principle of the MEMS stage are described, followed by a design procedure, structural and modal analyses using FEM(Finite Element Method). The areal efficiency of the MEMS stage was designed to be about 25%, which is very large compared with the conventional ones having a few percentage.

구배 지수에 근거한 MEMS 구조물의 강건 최적 설계 기법 (Gradient Index Based Robust Optimal Design Method for MEMS Structures)

  • 한정삼;곽병만
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1234-1242
    • /
    • 2003
  • In this paper we present a simple and efficient robust optimal design formulation for MEMS structures and its application to a resonant-type micro probe. The basic idea is to use the gradient index (GI) to improve robustness of the objective and constraint functions. In the robust optimal design procedure, a deterministic optimization for performance of MEMS structures is followed by design sensitivity analysis with respect to uncertainties such as fabrication errors and change of operating conditions. During the process of deterministic optimization and sensitivity analysis, dominant performance and uncertain variables are identified to define GI. The GI is incorporated as a term of objective and constraint functions in the robust optimal design formulation to make both performance and robustness improved. While most previous approaches for robust optimal design require statistical information on design variations, the proposed GI based method needs no such information and therefore is cost-effective and easily applicable to early design stages. For the micro probe example, robust optimums are obtained to satisfy the targets for the measurement sensitivity and they are compared in terms of robustness and production yield with the deterministic optimums through the Monte Carlo simulation. This method, although shown for MEMS structures, may as well be easily applied to conventional mechanical structures where information on uncertainties is lacking but robustness is highly important.

원전 증기발생기 전열관 와전류검사 보빈탐촉자 설계 (Eddy Current Bobbin Probe Design for Steam Generator Tubes in NPPs)

  • 남민우;이희종;지동현;정지홍;김철기
    • 비파괴검사학회지
    • /
    • 제27권2호
    • /
    • pp.89-96
    • /
    • 2007
  • 원자력발전소 증기발생기 전열관의 건전성을 평가하기 위해서 계획예방정비 기간에 수행되는 와전류검사의 여러 가지 기법중에서 보빈 탐촉자 검사는 가장 기본적인 중요한 검사이다. 와전류 탐촉자는 검사 계통의 핵심적인 부분으로서 특정 절차서에 따라 평가가 이루어질 때 대상 시험체의 합부를 결정하는 자료를 제공하게 된다. 또한, 수집된 와전류신호의 품질은 사용되는 탐촉자의 설계특성, 기하학적 형태, 운전주파수에 따라 결정되고, 검사결과에 미치는 영향이 크기 때문에 와전류검사 탐촉자의 선정은 특히 중요하다. 본 연구에서는 국내 원전 증기발생기 전열관 검사를 위한 최적의 차동형 보빈탐촉자를 설계하였다. 또한 보빈탐촉자 시작품의 전기적 특성과 와전류신호 특성 평가를 수행하여 만족한 결과를 도출하였다.

Development of Genus- and Species-Specific Probe Design System for Pathogen Detection Based on 23S rDNA

  • Park Jun-Hyung;Park Hee-Kyung;Kang Byeong-Chul;Song Eun-Sil;Jang Hyun-Jung;Kim Cheol-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.740-747
    • /
    • 2006
  • Amplification by universal consensus sequences in pathogenic bacterial DNA would allow rapid identification of pathogenic bacteria, and amplification of genus-specific and species-specific sequences of pathogenic bacterial DNA might be used for genotyping at the genus and species levels. For design of probes for molecular diagnostics, several tools are available as stand-alone programs or as Web application. However, since most programs can design only a few probe sets at one time, they are not suitable for large-scale and automatic probes design. Therefore, for high-throughput design of specific probes in diagnostic array development, an automated design tool is necessary. Thus, we developed a Web-based automatic system for design of genus-specific and species-specific probes for pathogen detection. The system is available at http://www.miprobe.com.

Development of an Infrared Two-color Probe for Particle Cloud Temperature Measurement

  • Alshaikh Mohammed, Mohammed Ali;Kim, Ki Seong
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.230-235
    • /
    • 2015
  • The demands for reliable particle cloud temperature measurement exist in many process industries and scientific researches. Particle cloud temperature measurements depend on radiation thermometry at two or more color bands. In this study, we developed a sensitive, fast response and compact online infrared two-color probe to measure the temperature of a particle cloud in a phase of two field flow (solid-gas). The probe employs a detector contained two InGaAs photodiodes with different spectral responses in the same optical path, which allowed a compact probe design. The probe was designed to suit temperature measurements in harsh environments with the advantage of durability. The developed two-color probe is capable of detecting particle cloud temperature as low as $300^{\circ}C$, under dynamic conditions.

Simulation of ECT Bobbin Coil Probe Signals to Determine Optimum Coil Gap

  • Kong, Young-Bae;Song, Sung-Jin;Kim, Chang-Hwan;Yu, Hyung-Ju;Nam, Min-Woo;Jee, Dong-Hyun;Lee, Hee-Jong
    • 비파괴검사학회지
    • /
    • 제26권6호
    • /
    • pp.403-410
    • /
    • 2006
  • Eddy current testing (ECT) signals produced by a differential bobbin coil probe vary according to probe design parameters such as the number of turns, geometry and coil gap size. In the present study, the characteristics of a differential bobbin coil probe signals are investigated by numerical simulation in order to determine the optimum coil gap. For verification of numerical simulation accuracy, a specially designed bobbin probe of which the coil gap can be adjusted is fabricated and a series of experiments to acquire signals from two kinds of standard tubes with the variation in coil gap is performed. Then, the experimental signals are compared to the simulation results. Based on this investigation, a decision on the optimum range of coil gap is made. The theoretically predicted signals agree very well to the experimental signals. In fact, this excellent agreement demonstrates a high potential of the simulation as a design optimization tool for ECT bobbin probes.

응력 및 표면 고장물리를 고려한 MEMS 신뢰성 설계 기술 (Reliability Design of MEMS based on the Physics of Failures by Stress & Surface Force)

  • 이학주;김정엽;이상주;최현주;김경식;김장현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1730-1733
    • /
    • 2007
  • As semiconductor and MEMS devices become smaller, testing process during their production should follow such a high density trend. A circuit inspection tool "probe card" makes contact with electrode pads of the device under test (DUT). Nowadays, electrode pads are irregularly arranged and have height difference. In order to absorb variations in the heights of electrode pads and to generate contact loads, contact probes must have some levels of mechanical spring properties. Contact probes must also yield a force to break the surface native oxide layer or contamination layer on the electrodes to make electric contact. In this research, new vertical micro contact probe with bellows shape is developed to overcome shortage of prior work. Especially, novel bellows shape is used to reduce stress concentration in this design and stopper is used to change the stiffness of micro contact probe. Variable stiffness can be one solution to overcome the height difference of electrode pads.

  • PDF

Low-ε Static Probe Development for 15N-1H Solid-state NMR Study of Membrane Proteins for an 800 MHz NB Magnet

  • Park, Tae-Joon;Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.823-826
    • /
    • 2013
  • A low-${\varepsilon}$ solid-state NMR(Nuclear Magnetic Resonance) probe was developed for the spectroscopic analysis of two-dimensional $^{15}N-^1H$ heteronuclear dipolar coupling in dilute membrane proteins oriented in hydrated and dielectrically lossy lipid environments. The system employed a 800 MHz narrow-bore magnet. A solenoid coil strip shield was used to reduce deleterious RF sample heating by minimizing the conservative electric fields generated by the double-tuned resonator at high magnetic fields. The probe's design, construction, and performance in solid-state NMR experiments at high magnetic fields are described here. Such high-resolution solid-state NMR spectroscopic analysis of static oriented samples in hydrated phospholipid bilayers or bicelles could aid the structural analysis of dilute biological membrane proteins.

Aerodynamic Damping Analysis of a Vane-type Multi-Function Air Data Probe

  • Lee, Yung-Gyo;Park, Young-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.99-104
    • /
    • 2013
  • Configuration design, analysis, and wind tunnel test of a vane-type multi-function air data probe (MFP) was described. First, numerical analysis was conducted for the initial configuration of the MFP in order to investigate aerodynamic characteristics. Then, the design was modified to improve static and dynamic stability for better response characteristics. The modified configuration design was verified through wind tunnel tests. The test results are also used to verify the accuracy of the analytical method. The analytically estimated aerodynamic damping provided by the Navier-Stokes equation solver correlated well with the wind tunnel test results. According to the calculation, the damping coefficient estimated from ramp motion analysis yielded a better correlation with the wind tunnel test than pitch oscillation analysis.

주사 현미경용 평면 스캐너 Part 1 :설계 및 정 · 동특성 해석 (A Flexure Guided Planar Scanner for Scanning Probe Microscope ; Part 1 : Design and Analysis of Static and Dynamic Properties)

  • 이동연;이무연
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.667-673
    • /
    • 2005
  • This paper shows a method for design of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors. In the design of flexure guides, the Castigliano's theorem was used to find the stiffness of the guide. The motion amplifying mechanism was used in the piezoelectric actuator to achieve a large travel range. We found theoretically the travel range of the total system and verified using the commercial FEM(finite element method) program. The maximum travel range of the planar scanner is above than 140 $\mu$m. The 3 axis positioning capability was verified by the mode analysis using the FEM program.