• Title/Summary/Keyword: probable precipitation

Search Result 79, Processing Time 0.036 seconds

Statistical Probable Maximum Precipitation based on CMIP6 SSP Scenario (CMIP6 SSP 시나리오를 기반으로 통계학적 가능최대 강수량)

  • Seo, Miru;Kim, Sunghun;Kwon, Jihye;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.169-169
    • /
    • 2022
  • 최근 기후변화와 도시화로 인해 집중호우, 홍수 등 극한 강우의 빈도와 규모가 증가하고 있는 추세이다. 또한, 극한 강우의 빈도가 증가함으로 가능최대강수량(Probable Maximum Precipitation, PMP)에 관한 관심도 증가하고 있다. 가능최대강수량의 경우 대규모 수공 구조물, 댐의 설계나 가능최대홍수량(Probable Maximum Flood, PMF) 산정에 사용 되며, 세계 기상 기구(World Meteorological Organiztion, WMO)는 가능최대강수량 산정 방법으로 수문기상학적 방법, 통계학적 방법, 포락 곡선 방법을 제안하고 있으며, 통계학적 가능최대강수량 산정방법으로는 Hershfield가 제안한 방법을 제시하고 있다. Hershfield가 제안한 방법의 경우 빈도계수를 사용하며, Hershfield(1961)는 빈도계수의 값을 15로 제안하였으나, 1965년에 빈도계수는 강우 지속시간과 평균에 따라 5~20 값을 갖는 노모그래프를 제안하였다. 본 연구에서는 빈도계수 산정 방법, 노모그래프를 이용한 빈도계수의 값 2가지를 산정한 후 국내 가능최대강수량 보고서와 비교하여 통계학적 가능최대강수량 산정 방법을 결정한 후, 결정된 빈도계수 산정 방법을 SSP시나리오에 이용하여 미래의 통계학적 가능최대강수량을 산정하여 가능최대강수량의 변화를 분석하고자 한다.

  • PDF

Estimation of Annual Minimal Probable Precipitation Under Climate Change in Major Cities (기후변화에 따른 주요 도시의 연간 최소 확률강우량 추정)

  • Park, Kyoohong;Yu, Soonyu;Byambadorj, Elbegjargal
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.51-58
    • /
    • 2016
  • On account of the increase in water demand and climate change, droughts are in great concern for water resources planning and management. In this study, rainfall characteristics with stationary and non-stationary perspectives were analyzed using Weibull distribution model with 40-year records of annual minimum rainfall depth collected in major cities of Korea. As a result, the non-stationary minimum probable rainfall was expected to decrease, compared with the stationary probable rainfall. The reliability of ${\xi}_1$, a variable reflecting the decrease of the minimum rainfall depth due to climate change, in Wonju, Daegu, and Busan was over 90%, indicating the probability that the minimal rainfall depths in those city decrease is high.

Interannual Variations of the Precipitation in Korea and the Comparison with Those in China and Japan (한국 강수량의 연 변동과 중국 및 일본 강수량과의 비교 연구)

  • Jo, Wan-Kuen;Weisel, C.P.
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.345-356
    • /
    • 1995
  • Examining the precipitation data collected during the period from 1960 to 1993, we found that Taegu Station represents an optimum station for explaining the interannual variations of the precipitation in Korea. Using the variations derived from Taegu, the secular trends of the precipitation in Korea have been studied. It was 삽so found that the interannual variations of summer monsoon precipitation are consistent with those of the annual precipitation. To explore the interannual variations of the summer monsoon precipitation, comparisons of the summer precipitation in Korea with that in China and Japan were made. The results of the empirical orthogonal function analysis showed that Korea, the Yangtze River and Huaihe River valley, and the south Japan are all located in the same climate system during summer. The detailed analysis was carried out on the comparison of the summer precipitation in Korea with that in the eastern part of the the mainland China. We found that the correlation pattern is similar to the East Asia/pacific pattern. The probable effects of the sea surface temperature on the precipitation in Korea were also discussed. Key Words : Precipitation in Korea, rainy seasons in East Asia, monsoon precipitation, interannual variations.

  • PDF

Dam Break Analysis with HEC-HMS and HEC-RAS (HEC-HMS와 HEC-RAS를 이용한 댐 붕괴 해석)

  • Hong, Seung-Jin;Kim, Soo-Jun;Kim, Hung-Soo;Kyung, Min-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.347-356
    • /
    • 2009
  • This study simulates the dam break situation by a probable maximum precipitation of Soyang-River Dam using HEC-HMS model and HEC-RAS model and compares the simulated results. The probable maximum precipitation was calculated using the flood event of the typhoon Rusa occurred in 2002 and using the mean areal precipitation of the Gangreung region and the moisture maximization method. The estimated probable maximum precipitations were compared for the duration of 6, 12, 18, and 24 hrs and were used as input data for the HEC-HMS model. Moreover, the inflow data calculated by HEC-HMS were utilized as ones for HEC-RAS, and then unsteady flow analysis was conducted. The two models were used for the dam break analysis with the same conditions and the peak flow estimated by HEC-HMS was larger than that of the HEC-RAS model. The applicability of two models was performed from the dam break analysis then we found that we could simulate more realistic peak flow by HEC-RAS than HEC-HMS. However, when we need more fast simulation results we could use HEC-HMS. Therefore, we may need the guidelines for the different utilizations with different purposes of two models. Furthermore, since the two models still include uncertainties, it is important to establish more detailed topographical factors and data reflecting actual rivers.

Comparison of the Estimation Methods for PMF (PMF 산정방법에 따른 비교)

  • Kim, Nam-Won;Lee, Jeong-Eun;Shin, Hong-Sup
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.710-714
    • /
    • 2005
  • 가능최대홍수량(Probable Maximum Flood; PMF)은 "지역에서 합리적으로 가능한 극심한 기상학적 그리고 수문학적인 조건들의 가장 심각한 조합으로 예상되는 홍수"라 정의되며, 가능최대강수량(Probable Maximum Precipitation, PMP) 입력으로 한 강우-유출관계에 의해서 산정되어진다. 본 연구에서는 댐과 같은 대규모 수공구조물의 설계와 평가의 기준이 되는 PMF 산정시 영향을 미치는 요소와 그에 따른 PMF를 비교$\cdot$검토하였다. PMF 산정방법 중 시간분포방법에 따른 가능최대호우(Probable Maximum Storm; PMS)의 구축과 단위도의 선정이 PMF의 값에 영향을 크게 미침을 알 수 있었다. 또한 기존 댐설계시 산정된 PMP/PMF와 재산정한 PMP/PMF의 변화를 비교$\cdot$고찰하였다. 평균적으로 기존 댐설계시에 비해 금회 산정한 PMP는 약 $27\%$, PMF는 약 $42\%$의 증가를 보였다. PMF의 증가는 PMP의 증가와 더불어 기존 단위도보다 실측자료에 근거한 단위도가 더 빠르고 강한 강도의 유역반응을 초래한 영향으로 판단된다.

  • PDF

Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula (여름철 한반도 강수의 시·공간적 특성 연구)

  • In, So-Ra;Han, Sang-Ok;Im, Eun-Soon;Kim, Ki-Hoon;Shim, JaeKwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.

Observed Characteristics of Precipitation Timing during the Severe Hazes: Implication to Aerosol-Precipitation Interactions (연무 종류별 강수 발생시간 관측 특성 및 에어로졸-강수 연관성 분석)

  • Eun, Seung-Hee;Zhang, Wenting;Park, Sung-Min;Kim, Byung-Gon;Park, Jin-Soo;Kim, Jeong-Soo;Park, Il-Soo
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.175-185
    • /
    • 2018
  • Characteristics of precipitation response to enhanced aerosols have been investigated during the severe haze events observed in Korea for 2011 to 2016. All 6-years haze events are classified into long-range transported haze (LH: 31%), urban haze (UH: 28%), and yellow sand (YS: 18%) in order. Long-range transported one is mainly discussed in this study. Interestingly, both LH (68%) and YS (87%) appear to be more frequently accompanied with precipitation than UH (48%). We also found out the different timing of precipitation for LH and YS, respectively. The variations of precipitation frequency for the LH event tend to coincide with aerosol variations specifically in terms of temporal covariation, which is in contrast with YS. Increased aerosol loadings following precipitation for the YS event seems to be primarily controlled by large scale synoptic forcing. Meanwhile, aerosols for the LH event may be closely associated with precipitation longevity through changes in cloud microphysics such that enhanced aerosols can increase smaller cloud droplets and further extend light precipitation at weaker rate. Notably, precipitation persisted longer than operational weather forecast not considering detailed aerosol-cloud interactions, but the timescale was limited within a day. This result demonstrates active interactions between aerosols and meteorology such as probable modifications of cloud microphysics and precipitation, synoptic-induced dust transport, and precipitation-scavenging in Korea. Understanding of aerosol potential effect on precipitation will contribute to improving the performance of numerical weather model especially in terms of precipitation timing and location.

Estimation of the frequency coefficient for statistical probable maximum precipitation (PMP) using the weather data in Korea (우리나라 기상자료를 이용한 통계학적 가능최대강수량 빈도계수 산정)

  • Seo, Miru;Lee, Joohyung;Kim, Gyobeom;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.169-169
    • /
    • 2021
  • 통계학적 가능최대강수량방법은 가능최대강수량(Probable Maximum Precipitation, PMP) 측정 방법 중 하나로 WMO에서 통계학적인 PMP 추정 방법으로 Hershfield가 제안한 공식을 제시했다. Hershfield는 95,000개의 자료를 분석하였으며, 기본적으로 통계학적 PMP 추정방법의 빈도계수는 km = 15로 제안하였다. 그러나 강우 지속기간 및 연최대 시계열의 평균에 따라 값이 변하게 되며, Hershfield(1965)는 지속시간과 연최대 시계열의 평균에 따른 빈도계수가 5 ~ 20 사이의 값을 갖는다고 제안한 바 있다. Hershfield의 빈도계수는 미국 지역의 2,645개의 관측소의 95,000개의 강우 자료 이용했기 때문에 우리나라의 적용하였을 때 신뢰성에 문제가 있을수 있으며, 우리나라에서는 통계학적 방법보다는 수문기상학적 PMP 추정 방법을 주로 사용하고 있다. 따라서 본 연구에서는 우리나라의 기상 자료중에서 가장 많은 양을 가지는 지점 10개를 선정하여 빈도계수를 산정하였다. 빈도계수를 산정하기 위해서는 시계열로 구성된 강우 자료를 사용해야하며, 본 연구에서는 기상 자료의 이상치 검정을 진행하였으며, 경향성의 경우 정상성을 가지는 것으로 가정하였다. 확률 분포형은 극치분포인 GEV분포, Gumbel분포, Log-Gumbel분포, Weibull분포를 비교하여 가장 적절한 분포형을 선정하여 진행하였다. 최종적으로 얻은 빈도계수를 이용하여 구한 PMP값과 기존 Hershfield가 제시한 빈도계수 값 km = 15를 이용한 PMP값을 비교하여 차이를 분석하였으며, 그 적용성을 평가하였다.

  • PDF

A Study on the Analysis of Time-Regional Distribution of PRecipitation Frequency and Rainfall INternsity in Korea. (강수빈도 및 강우강도의 시공적 분포분석에 관한 연구)

  • 이재준;손광익
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.53-72
    • /
    • 1981
  • In this study, South Korea is divided into 5 zones and is studied about the analysis of time-regional distribution of previpitation frequency and rainfall intensity in Korea. In the previpitation frequency analysis, the basic data groups of 39 stations were selected. The diagram of previpitation frequency was drawn, and the time-regional distribution of precipitation frequency was analized. In the rainfall intensity analysis, the basic data groups of 36 stations were selected. The probable rainfall, I-D-F curve, and regression equation between 24hr. and 10min.-18hr. areal depth were obtained. The results of this study are following; 1) The precipitation class of max. recurrence probability in every season except summer was commonly (1) 1-5mm, (2) 0.1-1mm, (3) 5-10mm in order. 2) The zone of max. recurrence frequency owing to the precipitation class was zone II in precipitation frequency of below 20mm, zone IV in precipitation frequency of 30-40mm, zone I in precipitation frequency of above 70mm for a year. 3) The recurrence probability of precipitation in Korea can be represented to the equation of exponential function; $$W(x)=e^{\alpha+\beta}$$ 4) The first and third zones were expected heavy rain for the short and long duration. 5) The I.D.F. curves were drawn, and established that the time interval for the least deviation of I.D.F curve is 10~40min., 40min. -4hr., 4~24hr. 6) The regression equations of areal mean depth between 24hr. and 10min.-18hr. for each zone were obtained. 7)The probable rainfall of 36 points were calculated.

  • PDF

Hydrological Stability Analysis of the Existing Soyanggang Multi-Purpose Dam (소양강 다목적댐의 수문학적 안정성 검토)

  • 고석구;신용노
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 1995
  • This study aims at suggesting an alternative to improve current capacity of flood control for the existing Soyanggang multi-purpose dam which was constructed 20 years ago as a largest dam in Korea. The newly estimated value of the probable maximum precipitation(PMP) is 760.0 mm which is based on the hydrometeorological method. The peak inflow of 1000 years return period at the time of construction was 13,500$m^3$/s. However, the newly estimated peak inflow of the PMF is 18,100$m^3$/s which is 1.34 times bigger than the original one. In order to adopt the newly estimated PMF as a design flood, following four alternatives were compared; (1) allocation of more flood control space by lowering the normal high water level, (2) construction of a new spillway in addition to the existing one, (3) raising the existing dam crest, (4) construction of a new dam which has relevant flood control storage at the upstream of the Soyanggang multipurpose dam. The preliminary evaluation of these alternatives resulted in that the second alternative is most economical and feasible. So as to stably cope with the newly estimated PMF by meeting all the current functions of the multi-purpose dam, a detailed study of an additional spillway tunnel has to be followed.

  • PDF