• Title/Summary/Keyword: probability trajectory

Search Result 86, Processing Time 0.022 seconds

ADS-B based Trajectory Prediction and Conflict Detection for Air Traffic Management

  • Baek, Kwang-Yul;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.377-385
    • /
    • 2012
  • The Automatic Dependent Surveillance Broadcast (ADS-B) system is a key component of CNS/ATM recommended by the International Civil Aviation Organization (ICAO) as the next generation air traffic control system. ADS-B broadcasts identification, positional data, and operation information of an aircraft to other aircraft, ground vehicles and ground stations in the nearby region. This paper explores the ADS-B based trajectory prediction and the conflict detection algorithm. The multiple-model based trajectory prediction algorithm leads accurate predicted conflict probability at a future forecast time. We propose an efficient and accurate algorithm to calculate conflict probability based on approximation of the conflict zone by a set of blocks. The performance of proposed algorithms is demonstrated by a numerical simulation of two aircraft encounter scenarios.

An Efficient Indexing Technique for Location Prediction of Moving Objects in the Road Network Environment (도로 네트워크 환경에서 이동 객체 위치 예측을 위한 효율적인 인덱싱 기법)

  • Hong, Dong-Suk;Kim, Dong-Oh;Lee, Kang-Jun;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • The necessity of future index is increasing to predict the future location of moving objects promptly for various location-based services. A representative research topic related to future index is the probability trajectory prediction technique that improves reliability using the past trajectory information of moving objects in the road network environment. However, the prediction performance of this technique is lowered by the heavy load of extensive future trajectory search in long-range future queries, and its index maintenance cost is high due to the frequent update of future trajectory. Thus, this paper proposes the Probability Cell Trajectory-Tree (PCT-Tree), a cell-based future indexing technique for efficient long-range future location prediction. The PCT-Tree reduces the size of index by rebuilding the probability of extensive past trajectories in the unit of cell, and improves the prediction performance of long-range future queries. In addition, it predicts reliable future trajectories using information on past trajectories and, by doing so, minimizes the cost of communication resulting from errors in future trajectory prediction and the cost of index rebuilding for updating future trajectories. Through experiment, we proved the superiority of the PCT-Tree over existing indexing techniques in the performance of long-range future queries.

  • PDF

A Study on the Circular Error Probability of Short-Range Rocket with Parachute (낙하산을 갖는 단거리 발사체의 오차분석)

  • 김찬수;조요한
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.218-225
    • /
    • 1999
  • This paper contains the computational simulation of a free rocket with a parachute and the development of a firing table for each range. To obtain the trajectory of the rocket, 6 DOF model of rocket with parachute was generated and the wind tunnel test was done for the input parameters. Good agreement was obtained between the analysis of trajectory and the flight test result. Also the trajectory error analysis was performed by the Monte Carlo simulation. As a result of simulation, the CEP(Circular Error Probability) of the firing table was calculated.

  • PDF

Random Forest Method and Simulation-based Effect Analysis for Real-time Target Re-designation in Missile Flight (유도탄의 실시간 표적 재지정을 위한 랜덤 포레스트 기법과 시뮬레이션 기반 효과 분석)

  • Lee, Han-Kang;Jang, Jae-Yeon;Ahn, Jae-Min;Kim, Chang-Ouk
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.35-48
    • /
    • 2018
  • The study of air defense against North Korean tactical ballistic missiles (TBM) should consider the rapidly changing battlefield environment. The study for target re-designation for intercept missiles enables effective operation of friendly defensive assets as well as responses to dynamic battlefield. The researches that have been conducted so far do not represent real-time dynamic battlefield situation because the hit probability for the TBM, which plays an important role in the decision making process, is fixed. Therefore, this study proposes a target re-designation algorithm that makes decision based on hit probability which considers real-time field environment. The proposed method contains a trajectory prediction model that predicts the expected trajectory of the TBM from the current position and velocity information by using random forest and moving window. The predicted hit probability can be calculated through the trajectory prediction model and the simulator of the intercept missile, and the calculated hit probability becomes the decision criterion of the target re-designation algorithm for the missile. In the experiment, the validity of the methodology used in the TBM trajectory prediction model was verified and the superiority of using the hit probability through the proposed model in the target re-designation decision making process was validated.

The Reaction Probability and the Reaction Cross-section of N + O2→ NO + O Reaction Computed by the 6th-order Explicit Symplectic Algorithm

  • He, Jianfeng;Li, Jing
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.1976-1980
    • /
    • 2006
  • We have calculated the reaction probability and the reaction cross-section of the $N(^4S)+O_2(X^3\sum_{g}^{-})\;\rightarrow\;NO(X^2\Pi)+O(^3P)$ reaction by the quasiclassical trajectory method with the 6th-order explicit symplectic algorithm, based on a new ground potential energy surface. The advantage of the 6th-order explicit symplectic algorithm, conserving both the total energy and the total angular momentum of the reaction system during the numerical integration of canonical equations, has firstly analyzed in this work, which make the calculation of the reaction probability more reliable. The variation of the reaction probability with the impact parameter and the influence of the relative translational energy on the reaction cross-section of the reaction have been discussed in detail. And the fact is found by the comparison that the reaction probability and the reaction cross-section of the reaction estimated in this work are more reasonable than the theoretical ones determined by Gilibert et al.

Interaction of Gas-phase Atomic Hydrogen with Chemisorbed Oxygen Atoms on a Silicon Surface

  • Lee, Sang-Kwon;Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1527-1533
    • /
    • 2011
  • The reaction of gas-phase atomic hydrogen with oxygen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH in the gas-surface reaction H(g) + O(ad)/Si${\rightarrow}$ OH(g) + Si. All reactive events occur in a single impact collision on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability is dependent upon the gas temperature and shows the maximum near 1000 K, but it is essentially independent of the surface temperature. The reaction probability is also independent upon the initial excitation of the O-Si vibration. The reaction energy available for the product state is carried away by the desorbing OH in its translational and vibrational motions. When the initial excitation of the O-Si vibration increases, translational and vibrational energies of OH rise accordingly, while the energy shared by rotational motion varies only slightly. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations, but the amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

Assessment of Long-Range Transport of Atmospheric Pollutants using a Trajectory Model with the puff Concept (퍼프 유적선모델에 의한 대기오염물질의 장거리수송량의 평가)

  • 정관영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.167-177
    • /
    • 1996
  • To investigate the source-receptor relationships aerosol model has been used to simulate the distribution behavior of the yellow sand. Data for meteorological fields were obtained by Meso-scale Analysis and Prediction Model System/Seoul National University (MAPMS/SNU) for five days (10-14 April 1988). To obtain the distributions of concentration of yellow sand,the aerosol model has been modified to allow quantifications of relative concentration distributions of yellow sand. Source regions of yellow sand were delineated by soil maps of China and emission rate as a function of wind stress(Westphal et al., 1987). Using 3-dimensional wind fields the backward trajectories from 3 receptor grids at the layer of .sigma. =0.95, 0.9, 0.85, 0.8 were calculated. In order to facilitate quantitative assessment of source-receptor relationships, it was assumed that the perturbations in along-trajectory and cross-trajectory proceed linearly with time, in accord with Gaussian distribution characteristics. On the basis of this assumption, the probability fields were calculated from every grid point with source strength 1. Using these probability fields and emission retes, the potential contributions of upstream sources along the trajectories were estimated. The results of this study indicate that the application of trajectory modeling is useful in investigating the quantitative relationship between source and receptor regions.

  • PDF

Continuous Speech Recognition based on Parmetric Trajectory Segmental HMM (모수적 궤적 기반의 분절 HMM을 이용한 연속 음성 인식)

  • 윤영선;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.35-44
    • /
    • 2000
  • In this paper, we propose a new trajectory model for characterizing segmental features and their interaction based upon a general framework of hidden Markov models. Each segment, a sequence of vectors, is represented by a trajectory of observed sequences. This trajectory is obtained by applying a new design matrix which includes transitional information on contiguous frames, and is characterized as a polynomial regression function. To apply the trajectory to the segmental HMM, the frame features are replaced with the trajectory of a given segment. We also propose the likelihood of a given segment and the estimation of trajectory parameters. The obervation probability of a given segment is represented as the relation between the segment likelihood and the estimation error of the trajectories. The estimation error of a trajectory is considered as the weight of the likelihood of a given segment in a state. This weight represents the probability of how well the corresponding trajectory characterize the segment. The proposed model can be regarded as a generalization of a conventional HMM and a parametric trajectory model. The experimental results are reported on the TIMIT corpus and performance is show to improve significantly over that of the conventional HMM.

  • PDF

Removal trajectory generation for LEO satellites and analysis collision probability during removal maneuver (저궤도 위성의 폐기경로 생성 및 폐기기동 중 충돌위험 분석)

  • Seong, Jae-Dong;Min, Chan-Oh;Jeong, Soon-Woo;Lee, Dae-Woo;Cho, Kyeum-Rae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.354-363
    • /
    • 2012
  • Now there are a lot of expired satellites or space debris around the earth orbit and they threaten the operating satellites and manned space missions. KOMPSAT-2 that scheduled to operate the mission by July, 2013 also has to consider the space debris. This paper introduces the '25 years rules' that must be re-entered within 25 years after the space mission for LEO satellites and describes the removal trajectory design that satisfies the '25 years rules' and minimizes fuel consumption. And this paper suggests monte-carlo simulation for risk analysis that causes the approaching object to the removal trajectory. The result shows that the collision probability of worst case presents 6.0741E-07 and it need to more analysis about precise satellite safety during removal maneuver because there is no information about the object size that approaching to the satellites.

MEASUREMENT OF THREE-DIMENSIONAL TRAJECTORIES OF BUBBLES AROUND A SWIMMER USING STEREO HIGH-SPEED CAMERA

  • Nomura, Tsuyoshi;Ikeda, Sei;Imura, Masataka;Manabe, Yoshitsugu;Chihara, Kunihiro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.768-772
    • /
    • 2009
  • This paper proposes a method for measurement three-dimensional trajectories of bubbles generated around a swimmer's arms from stereo high-speed camera videos. This method is based on two techniques: two-dimensional trajectory estimation in single-camera images and trajectory pair matching in stereo-camera images. The two-dimensional trajectory is estimated by block matching using similarity of bubble shape and probability of bubble displacement. The trajectory matching is achieved by a consistensy test using epipolar constraint in multiple frames. The experimental results in two-dimensional trajectory estimation showed the estimation accuracy of 47% solely by the general optical flow estimation, whereas 71% taking the bubble displacement into consideration. This concludes bubble displacement is an efficient aspect in this estimation. In three-dimensional trajectory estimation, bubbles were visually captured moving along the flow generated by an arm; which means an efficient material for swimmers to swim faster.

  • PDF