Browse > Article
http://dx.doi.org/10.5012/bkcs.2006.27.12.1976

The Reaction Probability and the Reaction Cross-section of N + O2→ NO + O Reaction Computed by the 6th-order Explicit Symplectic Algorithm  

He, Jianfeng (Department of Physics, School of Science, Beijing Institute of Technology)
Li, Jing (Key Laboratory for Supermolecular Structure and Materials of Ministry of Education, Jilin University)
Publication Information
Abstract
We have calculated the reaction probability and the reaction cross-section of the $N(^4S)+O_2(X^3\sum_{g}^{-})\;\rightarrow\;NO(X^2\Pi)+O(^3P)$ reaction by the quasiclassical trajectory method with the 6th-order explicit symplectic algorithm, based on a new ground potential energy surface. The advantage of the 6th-order explicit symplectic algorithm, conserving both the total energy and the total angular momentum of the reaction system during the numerical integration of canonical equations, has firstly analyzed in this work, which make the calculation of the reaction probability more reliable. The variation of the reaction probability with the impact parameter and the influence of the relative translational energy on the reaction cross-section of the reaction have been discussed in detail. And the fact is found by the comparison that the reaction probability and the reaction cross-section of the reaction estimated in this work are more reasonable than the theoretical ones determined by Gilibert et al.
Keywords
Quasiclassical trajectory method; 6th-order explicit symplectic algorithm; Reaction probability; Reaction cross-section;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Duff, J. W.; Bien, F.; Paulsen, D. E. Geophys. Res. Lett. 1994, 21, 2043   DOI
2 Gilibert, M.; Aguilar, A.; Gonzalez, M.; Sayos, R. Chem. Phys. 1993, 178, 287   DOI   ScienceOn
3 Sayos, R.; Aguilar, A.; Gilibert, M.; Gonzalez, M. J. Chem. Soc. Faraday Trans. 1993, 89, 3223   DOI
4 Gray, S. K.; Noid, D. W.; Sumpter, G. J. Chem. Phys. 1994, 101, 4062   DOI   ScienceOn
5 Qin, M. Z.; Wang, D. L.; Zhang, M. Q. J. Comp. Math. 1991, 9, 211
6 Yoshida, H. Phys. Lett. A. 1990, 150, 262   DOI   ScienceOn
7 Schlier, Ch.; Seiter, A. Comp. Phys. Comm. 2000, 130, 176   DOI   ScienceOn
8 Li, Y. X.; Ding, P. Z.; Jin, M. X. Chem. J. Chinese U. 1994, 15, 1181
9 Caridade, P. J. B. S.; Varandas, A. J. C. J. Chem. Phys. 2004, 108, 3556   DOI   ScienceOn
10 Karplus, M.; Porter, R. N.; Sharma, R. D. J. Chem. Phys. 1965, 43, 3259   DOI
11 Murrell, J. N.; Carter, S.; Farantos, S. C.; Huxley, P.; Varandas, A. J. C. Molecular Potential Energy Functions (Wiley, Chichester, 1984)
12 Feng, K. Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations Computation of Partial Differential Equations (Science Press, Beijing, 1985) p 42
13 Chase, M. W.; Jr.; Downey, C. A.; Downey, J. R.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data 1985, 4, 1
14 Corcoran, T. C.; Beiting, E. J.; Mitchell, M. O. J. Mol. Spectrosc. 1992, 154, 119   DOI   ScienceOn
15 Sayos, R.; Oliva, C.; González, M. J. Chem. Phys. 2002, 117, 670   DOI   ScienceOn
16 Ruth, R. D. IEEE Trans. Nuc. Sci. 1983, 30, 2669   DOI   ScienceOn
17 Schlier, Ch.; Seiter, A. J. Phys. Chem. A 1998, 102, 9399   DOI   ScienceOn
18 Sayos, R.; Hijazo, J.; Gilibert, M.; González, M. Chem. Phys. Lett. 1998, 284, 101   DOI   ScienceOn
19 Warneck, P. Chemistry of the Natural atmosphere (Academic, San Diego, 1998), Chap. 3
20 Gilibert, M.; Aguilar, A.; González, M.; Sayós, R. Chem. Phys. 1993, 172, 99   DOI   ScienceOn