Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.5.1527

Interaction of Gas-phase Atomic Hydrogen with Chemisorbed Oxygen Atoms on a Silicon Surface  

Lee, Sang-Kwon (Department of Chemistry Education, Chonnam National University)
Ree, Jong-Baik (Department of Chemistry Education, Chonnam National University)
Kim, Yoo-Hang (Department of Chemistry and Center for Chemical Dynamics, Inha University)
Shin, Hyung-Kyu (Department of Chemistry, University of Nevada)
Publication Information
Abstract
The reaction of gas-phase atomic hydrogen with oxygen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH in the gas-surface reaction H(g) + O(ad)/Si${\rightarrow}$ OH(g) + Si. All reactive events occur in a single impact collision on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability is dependent upon the gas temperature and shows the maximum near 1000 K, but it is essentially independent of the surface temperature. The reaction probability is also independent upon the initial excitation of the O-Si vibration. The reaction energy available for the product state is carried away by the desorbing OH in its translational and vibrational motions. When the initial excitation of the O-Si vibration increases, translational and vibrational energies of OH rise accordingly, while the energy shared by rotational motion varies only slightly. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations, but the amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.
Keywords
Classical trajectory; Silicon; Hydrogen; Oxygen; OH;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Ree, J.; Kim, Y. H.; Shin, H. K. J. Phys. Chem. A 2003, 107, 5101.   DOI   ScienceOn
2 Rogers, P. J.; Selco, J. I.; Rowland, F. S. Chem. Phys. Lett. 1983, 97, 313.   DOI   ScienceOn
3 Rowland, F. S. Faraday Discuss. Chem. Soc. 1983, 75, 158.
4 Eaborn, C.; Jones, K. L.; Smith, J. D.; Tavakkoli, K. J. Chem. Soc. Chem. Commun. 1989, 17, 1201.
5 Lopez, V.; Marcus, R. A. Chem. Phys. Lett. 1982, 93, 232.   DOI   ScienceOn
6 Cheng, C. C.; Lucas, S. R.; Gutleben, H.; Choyke, W. J.; Yates, J. T., Jr. J. Am. Chem. Soc. 1992, 114, 1249.   DOI
7 Yates, J. T.; Cheng, C. C.; Gao, Q.; Choyke, W. J. Surf. Sci. Rep. 1993, 19, 79.   DOI   ScienceOn
8 Kim, Y. H.; Ree, J.; Shin, H. K. J. Chem. Phys. 1998, 108, 9821.   DOI   ScienceOn
9 Adelman, S. A. Adv. Chem. Phys. 1980, 44, 143.   DOI
10 Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Lett. 2002, 353, 368.   DOI   ScienceOn
11 American Institute of Physics Handbook, 3rd ed.; Gray, D. E., Ed.; McGraw-Hill: 1972; pp 4-116.
12 Ree, J.; Kim, Y. H.; Shin, H. K. J. Chem. Phys. 1996, 104, 742.   DOI
13 Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: 1979.
14 Jenichen, A.; Johansen, H. Surf. Sci. 1988, 203, 143.   DOI   ScienceOn
15 Ghio, E.; Mattera, L.; Salvo, C.; Tommasini, F.; Valbusa, U. J. Chem. Phys. 1980, 73, 556   DOI
16 Lim, S.; Ree, J.; Kim, Y. H. Bull. Kor. Chem. Soc. 1999, 20, 1136.
17 Huffman, M.; McMillan, P. J. Non-Cryst. Solids 1985, 76, 369.   DOI   ScienceOn
18 Krol, J. M.; Rabinovich, E. M. J. Non-Cryst. Solids 1986, 82, 143.   DOI   ScienceOn
19 Park, J.; Ree, J.; Lee, S. K.; Kim, Y. H. Bull. Kor. Chem. Soc. 2007, 28, 2271.   DOI   ScienceOn
20 Interaction of Atoms and Molecules with Solid Surfaces; Bortolani, V., March, N. H., Tosi, M. P., Eds.; Plenum: 1990.
21 Dynamics of Gas-Surface Interactions; Rettner, C. T., Ashfold, M. N. R., Eds.; Royal Society of Chemistry: 1991.
22 Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley: 1994.
23 Shustorovich, E. Surf. Sci. Rep. 1986, 6, 1.   DOI   ScienceOn
24 Christmann, K. Surf. Sci. Rep. 1988, 9, 1.   DOI   ScienceOn
25 CRC Handbook of Chemistry and Physics, 64th ed.; Weast, R. C., Ed.; CRC Press: 1983; pp F176-F181.
26 Koleske, D. D.; Gates, S. M.; Jackson, B. J. Chem. Phys. 1994, 101, 3301.   DOI   ScienceOn
27 Kratzer, P. J. Chem. Phys. 1997, 106, 6752.   DOI   ScienceOn
28 Buntin, S. A. J. Chem. Phys. 1998, 108, 1601.   DOI   ScienceOn
29 Ree, J.; Shin, H. K. J. Chem. Phys. 1999, 111, 10261.   DOI   ScienceOn
30 Kim, Y. H.; Ree, J.; Shin, H. K. Chem. Phys. Lett. 1999, 314, 1.   DOI   ScienceOn
31 Wang, G. T.; Mui, C.; Musgrave, C. B.; Bent, S. F. J. Phys. Chem. B 1999, 103, 6803.   DOI   ScienceOn
32 Gross, A. Surf. Sci. Rep. 1998, 32, 291.   DOI   ScienceOn
33 Marcus, R. A. Faraday Discuss. Chem. Soc. 1983, 75, 103.   DOI
34 Lopez, V.; Fairen, V.; Lederman, S. M.; Marcus, R. A. J. Chem. Phys. 1986, 84, 5494.   DOI
35 Shin, H. K. J. Chem. Phys. 1990, 92, 5223.   DOI
36 Kadas, K.; Molnar, L. F.; Naray-Szabo, G. J. Mol. Struc. (Theochem) 2000, 501-502, 459.   DOI   ScienceOn
37 Zgierski, M. Z.; Smedarchina, Z. K. Europhys. Lett. 2003, 63, 556.   DOI   ScienceOn
38 Skliar, D. B.; Willis, B. G. J. Phys. Chem. 2008, 112, 9434.