DOI QR코드

DOI QR Code

Interaction of Gas-phase Atomic Hydrogen with Chemisorbed Oxygen Atoms on a Silicon Surface

  • Lee, Sang-Kwon (Department of Chemistry Education, Chonnam National University) ;
  • Ree, Jong-Baik (Department of Chemistry Education, Chonnam National University) ;
  • Kim, Yoo-Hang (Department of Chemistry and Center for Chemical Dynamics, Inha University) ;
  • Shin, Hyung-Kyu (Department of Chemistry, University of Nevada)
  • 투고 : 2010.12.24
  • 심사 : 2011.03.09
  • 발행 : 2011.05.20

초록

The reaction of gas-phase atomic hydrogen with oxygen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH in the gas-surface reaction H(g) + O(ad)/Si${\rightarrow}$ OH(g) + Si. All reactive events occur in a single impact collision on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability is dependent upon the gas temperature and shows the maximum near 1000 K, but it is essentially independent of the surface temperature. The reaction probability is also independent upon the initial excitation of the O-Si vibration. The reaction energy available for the product state is carried away by the desorbing OH in its translational and vibrational motions. When the initial excitation of the O-Si vibration increases, translational and vibrational energies of OH rise accordingly, while the energy shared by rotational motion varies only slightly. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations, but the amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

키워드

참고문헌

  1. Interaction of Atoms and Molecules with Solid Surfaces; Bortolani, V., March, N. H., Tosi, M. P., Eds.; Plenum: 1990.
  2. Dynamics of Gas-Surface Interactions; Rettner, C. T., Ashfold, M. N. R., Eds.; Royal Society of Chemistry: 1991.
  3. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley: 1994.
  4. Shustorovich, E. Surf. Sci. Rep. 1986, 6, 1. https://doi.org/10.1016/0167-5729(86)90003-8
  5. Christmann, K. Surf. Sci. Rep. 1988, 9, 1. https://doi.org/10.1016/0167-5729(88)90009-X
  6. CRC Handbook of Chemistry and Physics, 64th ed.; Weast, R. C., Ed.; CRC Press: 1983; pp F176-F181.
  7. Koleske, D. D.; Gates, S. M.; Jackson, B. J. Chem. Phys. 1994, 101, 3301. https://doi.org/10.1063/1.467577
  8. Kratzer, P. J. Chem. Phys. 1997, 106, 6752. https://doi.org/10.1063/1.473672
  9. Buntin, S. A. J. Chem. Phys. 1998, 108, 1601. https://doi.org/10.1063/1.475530
  10. Ree, J.; Shin, H. K. J. Chem. Phys. 1999, 111, 10261. https://doi.org/10.1063/1.480375
  11. Kim, Y. H.; Ree, J.; Shin, H. K. Chem. Phys. Lett. 1999, 314, 1. https://doi.org/10.1016/S0009-2614(99)01124-0
  12. Wang, G. T.; Mui, C.; Musgrave, C. B.; Bent, S. F. J. Phys. Chem. B 1999, 103, 6803. https://doi.org/10.1021/jp991528x
  13. Kadas, K.; Molnar, L. F.; Naray-Szabo, G. J. Mol. Struc. (Theochem) 2000, 501-502, 459. https://doi.org/10.1016/S0166-1280(99)00460-1
  14. Zgierski, M. Z.; Smedarchina, Z. K. Europhys. Lett. 2003, 63, 556. https://doi.org/10.1209/epl/i2003-00566-9
  15. Skliar, D. B.; Willis, B. G. J. Phys. Chem. 2008, 112, 9434.
  16. Cheng, C. C.; Lucas, S. R.; Gutleben, H.; Choyke, W. J.; Yates, J. T., Jr. J. Am. Chem. Soc. 1992, 114, 1249. https://doi.org/10.1021/ja00030a020
  17. Yates, J. T.; Cheng, C. C.; Gao, Q.; Choyke, W. J. Surf. Sci. Rep. 1993, 19, 79. https://doi.org/10.1016/0167-5729(93)90005-A
  18. Kim, Y. H.; Ree, J.; Shin, H. K. J. Chem. Phys. 1998, 108, 9821. https://doi.org/10.1063/1.476457
  19. Adelman, S. A. Adv. Chem. Phys. 1980, 44, 143. https://doi.org/10.1002/9780470142639.ch2
  20. Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Lett. 2002, 353, 368. https://doi.org/10.1016/S0009-2614(02)00026-X
  21. American Institute of Physics Handbook, 3rd ed.; Gray, D. E., Ed.; McGraw-Hill: 1972; pp 4-116.
  22. Ree, J.; Kim, Y. H.; Shin, H. K. J. Chem. Phys. 1996, 104, 742. https://doi.org/10.1063/1.470799
  23. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: 1979.
  24. Jenichen, A.; Johansen, H. Surf. Sci. 1988, 203, 143. https://doi.org/10.1016/0039-6028(88)90200-2
  25. Ghio, E.; Mattera, L.; Salvo, C.; Tommasini, F.; Valbusa, U. J. Chem. Phys. 1980, 73, 556 https://doi.org/10.1063/1.439855
  26. Lim, S.; Ree, J.; Kim, Y. H. Bull. Kor. Chem. Soc. 1999, 20, 1136.
  27. Huffman, M.; McMillan, P. J. Non-Cryst. Solids 1985, 76, 369. https://doi.org/10.1016/0022-3093(85)90011-0
  28. Krol, J. M.; Rabinovich, E. M. J. Non-Cryst. Solids 1986, 82, 143. https://doi.org/10.1016/0022-3093(86)90122-5
  29. Park, J.; Ree, J.; Lee, S. K.; Kim, Y. H. Bull. Kor. Chem. Soc. 2007, 28, 2271. https://doi.org/10.5012/bkcs.2007.28.12.2271
  30. Ree, J.; Kim, Y. H.; Shin, H. K. J. Phys. Chem. A 2003, 107, 5101. https://doi.org/10.1021/jp030227r
  31. Rogers, P. J.; Selco, J. I.; Rowland, F. S. Chem. Phys. Lett. 1983, 97, 313. https://doi.org/10.1016/0009-2614(83)80014-1
  32. Rowland, F. S. Faraday Discuss. Chem. Soc. 1983, 75, 158.
  33. Eaborn, C.; Jones, K. L.; Smith, J. D.; Tavakkoli, K. J. Chem. Soc. Chem. Commun. 1989, 17, 1201.
  34. Lopez, V.; Marcus, R. A. Chem. Phys. Lett. 1982, 93, 232. https://doi.org/10.1016/0009-2614(82)80129-2
  35. Marcus, R. A. Faraday Discuss. Chem. Soc. 1983, 75, 103. https://doi.org/10.1039/dc9837500103
  36. Lopez, V.; Fairen, V.; Lederman, S. M.; Marcus, R. A. J. Chem. Phys. 1986, 84, 5494. https://doi.org/10.1063/1.449906
  37. Shin, H. K. J. Chem. Phys. 1990, 92, 5223. https://doi.org/10.1063/1.458572
  38. Gross, A. Surf. Sci. Rep. 1998, 32, 291. https://doi.org/10.1016/S0167-5729(98)00008-9