• 제목/요약/키워드: pro-inflammatory factors

검색결과 169건 처리시간 0.024초

긴병꽃풀(Glechoma hederacea var. longituba) ethyl acetate 분획물의 항염증 활성 및 B16F10 세포의 멜라닌 생성에 미치는 영향 (The Effects on Melanogenesis in B16F10 Melanoma Cells and the Anti-inflammatory Activities of an Ethyl Acetate Fraction from Glechoma hederacea var. longituba)

  • 염현지;오민정;채정우;이진영
    • 생명과학회지
    • /
    • 제32권3호
    • /
    • pp.222-231
    • /
    • 2022
  • 본 연구는 긴병꽃풀 ethyl acetate 분획물의 미백 및 항염증 활성 검증을 통해 화장품 소재로서의 활용 가능성을 확인하고자 하였다. 전자공여능과 ABTS+ radical 소거능 측정 결과 최고 농도인 1,000 ㎍/ml에서 각각 89.6%, 88.7%의 활성을 확인할 수 있었다. Tyrosinase 저해활성 측정 결과 최고 농도인 1,000 ㎍/ml에서 ethyl acetate 분획물은 22.3%의 억제활성을 나타내었다. 세포 생존율 측정 결과, 멜라노마 세포와 대식세포에 대해 긴병꽃풀 ethyl acetate 분획물을 처리한 모든 구간에서 80% 이상의 생존율을 보였다. 긴병꽃풀 ethyl acetate 분획물의 단백질 및 mRNA 발현량을 측정하기 위한 western blot과 RT-PCR의 농도구간은 25, 50, 100 ㎍/ml으로 설정하였다. 그 결과 분획물의 농도가 증가함에 따라 발현양이 감소됨을 확인하였으며 미백관련 인자 MITF와 TRP-2의 단백질 발현 억제율이 대조군인 kojic acid에 비해 우수하였고, tyrosinase에 대해서는 100 ㎍/ml에서 29.1%의 가장 낮은 발현량을 보여 매우 뛰어난 mRNA 발현 억제를 확인할 수 있었다. Pro-inflammatory cytokine인 IL-1β, IL-6 및 TNF-α의 단백질 및 mRNA 발현량에 미치는 영향을 확인한 결과, IL-6와 TNF-α의 인자가 같은 농도의 대조군인 Vit. C에 비해 높은 단백질 및 mRNA 억제율을 나타내었다. 이러한 실험결과를 기반으로 긴병꽃풀 ethyl acetate 분획물이 기능성 소재로서의 활용 가능성을 확인함으로써 화장품에 천연 소재로서 응용할 수 있을 것이라 판단되었다.

Foeniculum vulgare Mill. Protects against Lipopolysaccharide-induced Acute Lung Injury in Mice through ERK-dependent NF-kB Activation

  • Lee, Hui Su;Kang, Purum;Kim, Ka Young;Seol, Geun Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.183-189
    • /
    • 2015
  • Foeniculum vulgare Mill. (fennel) is used to flavor food, in cosmetics, as an antioxidant, and to treat microbial, diabetic and common inflammation. No study to date, however, has assessed the anti-inflammatory effects of fennel in experimental models of inflammation. The aims of this study were to investigate the anti-inflammatory effects of fennel in model of lipopolysaccharide (LPS)-induced acute lung injury. Mice were randomly assigned to seven groups (n=7~10). In five groups, the mice were intraperitoneally injected with 1% Tween 80-saline (vehicle), fennel (125, 250, $500{\mu}l/kg$), or dexamethasone (1 mg/kg), followed 1 h later by intratracheal instillation of LPS (1.5 mg/kg). In two groups, the mice were intraperitoneally injected with vehicle or fennel ($250{\mu}l/kg$), followed 1 h later by intratracheal instillation of sterile saline. Mice were sacrificed 4 h later, and bronchoalveolar lavage fluid (BALF) and lung tissues were obtained. Fennel significantly and dose-dependently reduced LDH activity and immune cell numbers in LPS treated mice. In addition fennel effectively suppressed the LPS-induced increases in the production of the inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha, with $500{\mu}l/kg$ fennel showing maximal reduction. Fennel also significantly and dose-dependently reduced the activity of the proinflammatory mediator matrix metalloproteinase 9 and the immune modulator nitric oxide (NO). Assessments of the involvement of the MAPK signaling pathway showed that fennel significantly decreased the LPS-induced phosphorylation of ERK. Fennel effectively blocked the inflammatory processes induced by LPS, by regulating pro-inflammatory cytokine production, transcription factors, and NO.

한련초(旱蓮草) 추출물의 항염증 효과 (Anti-inflammatory effects of the water extract of Ecliptae Herba)

  • 조희창;정호준;김상찬;지선영
    • 한방안이비인후피부과학회지
    • /
    • 제23권2호
    • /
    • pp.125-138
    • /
    • 2010
  • Objective : The present study was examined to evaluate the effects of Ecliptae Herba on the production of inflammatory mediators in vivo and in vitro. Methods : In cell viability, all three doses of Ecliptae Herba extract (25, 50 and $100\;{\mu}g/ml$) had no significant cytotoxicity during the experimental period. The increases of NO production and iNOS expression were detected in LPS-activated cells compared to control, but these increases were dose-dependently attenuated by pre-treatment with Ecliptae Herba extract. Results : 1. LPS plays a pivotal roles in inducing to the massive production of pro-inflammatory cytokines such as TNF-$\alpha$, IL-$1{\beta}$ and IL-6 in macrophages. 2. Ecliptae Herba extract reduced the elevated production of cytokines by LPS. 3. Ecliptae Herba extract reduced $PGE_2$ levels in a dose-dependent manner as a consequence of inhibition of COX-2 activity. 4. Ecliptae Herba extract significantly reduced the nuclear translocation of $NF-{\kappa}B$ induced by LPS. 5. In histopathological study, Ecliptae Herba effectively inhibited the increases of hind paw edema, skin thicknesses and inflammatory cell infiltrations induced by carrageenan treatment. Conclusions : These results provide evidences that therapeutic effect of Ecliptae Herba on the acute inflammation is partly due to the reduction of some of inflammatory factors by inhibiting iNOS and COX-2 through the suppression of $NF-{\kappa}B$.

Effect of long-chain inorganic polyphosphate treated with wheat phytase on interleukin 8 signaling in HT-29 cells

  • An, Jeongmin;Cho, Jaiesoon
    • Animal Bioscience
    • /
    • 제35권6호
    • /
    • pp.892-901
    • /
    • 2022
  • Objective: This study was performed to investigate the potential effect of wheat phytase on long-chain inorganic polyphosphate (polyP)-mediated interleukin 8 (IL-8) signaling in an intestinal epithelial cell line, HT-29 cells. Methods: Cell viability and the release of the pro-inflammatory cytokine IL-8 in HT-29 cells exposed to polyP1150 (average of 1,150 phosphate residues) treated with or without wheat phytase were measured by the EZ-CYTOX kit and the IL-8 ELISA kit, respectively. Also, the activation of cellular inflammatory factors NF-κB and MAPK (p38 and ERK 1/2) in HT-29 cells was investigated using ELISA kits. Results: PolyP1150 negatively affected the viability of HT-29 cells in a dose-dependent manner. However, 100 mM polyP1150 dephosphorylated by wheat phytase increased cell viability by 1.4-fold over that of the intact substrate. Moreover, the 24 h exposure of cells to enzyme-treated 50 mM polyP1150 reduced the secretion of IL-8 and the activation of NF-κB by 9% and 19%, respectively, compared to the intact substrate. PolyP1150 (25 and 50 mM) dephosphorylated by the enzyme induced the activation of p38 MAPK via phosphorylation to 2.3 and 1.4-fold, respectively, compared to intact substrate, even though it had little effect on the expression of ERK 1/2 via phosphorylation. Conclusion: Wheat phytase could attenuate polyP1150-induced IL-8 release in HT-29 cells through NF-κB, independent of MAP kinases p38 and ERK. Thus, wheat phytase may alleviate inflammatory responses including hypercytokinemia caused by bacterial polyP infection in animals. Therefore, wheat phytase has the potential as an anti-inflammatory therapeutic supplement in animal husbandry.

Chitinase 3-Like 1 (CHI3L1) Polymorphism Contributes to Visceral Obesity and Obesity-related Inflammation Induces Chi3l1 in Adipocytes

  • Kim, A Young;Jeong, Hyun Woo;Lee, Ji-Hae;Choi, Jin Kyu;Kim, Jeong Kee;Hwang, Jae Sung;Seo, Dae-Bang
    • 대한의생명과학회지
    • /
    • 제24권1호
    • /
    • pp.23-29
    • /
    • 2018
  • Abdominal obesity is considered as one of the most risky factors governing the development of metabolic diseases. Here we identify that human chitinase 3-like 1 (CHI3L1, also called YKL-40 in human) single nucleotide polymorphism (SNP), rs883125, is associated with abdominal obesity in Korean women. Korean women subjects with the rs883125 G/G or C/G genotype present higher waist-hip ratio than subjects with C/C genotype suggesting that human subjects who G nucleotide substitution at the rs883125 tended to more accumulate intra-abdominal fat at the abdominal cavity. In addition, Chi3l1 gene expression is increased in adipose tissue from obese mice and pro-inflammatory cytokine enhances Chi3l1 expression in adipocytes, indicating that Chi3l1 is greatly related with obesity and obesity-induced pro-inflammatory responses. Taken together, the minor allele of rs883125 is associated with a higher prevalence of abdominal obesity in Korean women. These findings suggest that genotype of rs883125 can be a biomarker of incident abdominal obesity and abdominal obesity-related metabolic diseases.

Signal Transduction Network Leading to COX-2 Induction: A Road Map in Search of Cancer Chemopreventives

  • Surh Young-Joon;Kundu Joydeb Kumar
    • Archives of Pharmacal Research
    • /
    • 제28권1호
    • /
    • pp.1-15
    • /
    • 2005
  • Cancer is still a major global health concern even after an everlasting strive in conquering this dread disease. Emphasis is now given to chemoprevention to reduce the risk of cancer and also to improve the quality of life among cancer afflicted individuals. Recent progress in molecular biology of cancer has identified key components of the cellular signaling network, whose functional abnormality results in undesired alterations in cellular homeostasis, creating a cellular microenvironment that favors premalignant and malignant transformation. Multiple lines of evidence suggest an elevated expression of cyclooxygenase-2 (COX-2) is causally linked to cancer. In response to oxidative/pro-inflammatory stimuli, turning on unusual signaling arrays mediated through diverse classes of kinases and transcription factors results in aberrant expression of COX-2. Population-based as well as laboratory studies have explored a broad spectrum of chemopreventive agents including selective COX-2 inhibitors and a wide variety of anti-inflammatory phytochemicals, which have been shown to target cellular signaling molecules as underlying mechanisms of chemoprevention. Thus, unraveling signaling pathways regulating aberrant COX-2 expression and targeted blocking of one or more components of those signal cascades may be exploited in searching chemopreventive agents in the future.

Obesity, Inflammation and Diet

  • Lee, Hansongyi;Lee, In Seok;Choue, Ryowon
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제16권3호
    • /
    • pp.143-152
    • /
    • 2013
  • Obesity is a state in which there is an over-accumulation of subcutaneous and/or abdominal adipose tissue. This adipose tissue is no longer considered inert and mainly devoted to storing energy; it is emerging as an active tissue in the regulation of physiological and pathological processes, including immunity and inflammation. Adipose tissue produces and releases a variety of adipokines (leptin, adiponectin, resistin, and visfatin), as well as pro- and anti-inflammatory cytokines (tumor necrosis factor-${\alpha}$, interleukin [IL]-4, IL-6, and others). Adipose tissue is also implicated in the development of chronic metabolic diseases such as type 2 diabetes mellitus or cardiovascular disease. Obesity is thus an underlying condition for inflammatory and metabolic diseases. Diet or dietary patterns play critical roles in obesity and other pathophysiological conditions. A healthy diet and some nutrients are generally considered beneficial; however, some dietary nutrients are still considered controversial. In this article, dietary factors that influence inflammation associated with obesity are discussed.

Anti-inflammatory EFfects of the Cone from Pinus rigida x Pinus taeda via NF-κB and MAPK Signaling Pathways in Macrophages

  • Seo-Yoon Park;Hye-Jeong Park;So-Yeon Han;Da-Yoon Lee;Jun-Hwan Jeong;Yoon-Jae Kwon;Tae-Won Jang;Jae-Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.108-108
    • /
    • 2022
  • Pine (Pinaceae family such as Pinus densiflora, P. rigida, and P.taeda) has been used as traditional medicine, its various parts (pine needle, bark, sap) have been used for hemostasis, bruises, and burns. These species were reported that have phenolics and flavonoids. We evaluated the anti-inflammation effects of PRT in lipopolysaccharide (LPS)-induced macrophages. These results showed that the ethyl acetate fraction of cone from Pinus rigida x P.taeda (ECRT) stabilized free radicals by reducing reactive oxygen species (ROS) and decreasing the production of nitric oxide (NO). ECRT decreased the expressions of nitric oxide synthase (iNOS) and cyclooxygenase (COX-2). In addition, ECRT significantly suppressed mRNA levels of inflammation-related factors such as cytokines, iNOS, and COX-2. As a result, ECRT was related to alleviating various pro-inflammatory mediators through IκB/NF-κB signaling pathways, including p65 translocation to the nucleus.

  • PDF

진교(秦艽)가 항염 효과에 미치는 영향 (Anti-inflammaory effects of the MeOH extract of Gentianae Macrophyllae Radix in vivo)

  • 조희창;정호준;이재근;조미정;지선영
    • 한방안이비인후피부과학회지
    • /
    • 제22권3호
    • /
    • pp.63-70
    • /
    • 2009
  • Objectives : The present study was examined to evaluate the anti-inflammatory effects of the Gentianae Macrophyllae Radix MeOH extracts (GMR) in vivo. Methods : The effects of GMR on anti-inflammation were measured by production of NO, TNF-$\alpha$ (Tumor Necrosis Factor-alpha) and IL-$1{\beta}$ (Interleukin-$1{\beta}$), IL-6 in Raw 264.7 macrophage cells stimulated with LPS. Results : 1. All concentrations of GMR(0.10 mg/ml) had no significant cytotoxicity in Raw 264.7 cell during the entire experimental period. 2. The level of NO and iNOS in culture medium was dramatically increased by LPS application. However, these increases were dose-dependently(0.03 and 0.10 mg/ml) attenuated by treatment with GMR. 3. All concentrations of GMR significantly inhibited the production of IL-$1{\beta}$ in Raw 264.7 macrophage cells stimulated with LPS. Conclusions : These results provide evidences that therapeutic effect of GMR on heat syndrome, especially due to the acute inflammation, are partly due to the reduction of some of inflammatory factors by inhibiting iNOS and COX-2 through the suppression of $p-I{\kappa}B{\alpha}$. Moreover, it suggests that the mechanism of action of GMR comes from the suppression of inflammatory mediators, such as NO, PGE2 and pro-inflammatory cytokines.

  • PDF

조골세포에서 Porphyromonas gingivalis Lipopolysaccharide와 니코틴에 의한 염증에 대한 JAK/STAT Pathway의 역할 (JAK/STAT Pathway Modulates on Porphyromonas gingivalis Lipopolysaccharide- and Nicotine-Induced Inflammation in Osteoblasts)

  • 한양금;이인수;이상임
    • 치위생과학회지
    • /
    • 제17권1호
    • /
    • pp.81-86
    • /
    • 2017
  • Bacterial infection and smoking are an important risk factors involved in the development and progression of periodontitis. However, the signaling mechanism underlying the host immune response is not fully understood in periodontal lesions. In this study, we determined the expression of janus kinase (JAK)/signal transducer and activator of transcription (STAT) on Porphyromonas gingivalis lipopolysaccharide (LPS)- and nicotine-induced cytotoxicity and the production of inflammatory mediators, using osteoblasts. The cells were cultured with 5 mM nicotine in the presence of $1{\mu}g/ml$ LPS. Cell viability was determined using MTT assay. The role of JAK on inflammatory mediator expression and production, and the regulatory mechanisms involved were assessed via enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blot analysis. LPS- and nicotine synergistically induced the production of cyclooxgenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) and increased the protein expression of JAK/STAT. Treatment with an JAK inhibitor blocked the production of COX-2 and $PGE_2$ as well as the expression of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$ ($IL-1{\beta}$), and IL-6 in LPS- and nicotine-stimulated osteoblasts. These results suggest that JAK/STAT is closely related to the LPS- and nicotine-induced inflammatory effects and is likely to regulate the immune response in periodontal disease associated with dental plaque and smoking.