Anti-inflammaory effects of the MeOH extract of Gentianae Macrophyllae Radix in vivo

진교(秦艽)가 항염 효과에 미치는 영향

  • 조희창 (대구한의대학교 안이비인후피부과교실) ;
  • 정호준 (대구한의대학교 안이비인후피부과교실) ;
  • 이재근 (대구한의대학교 안이비인후피부과교실) ;
  • 조미정 (대구한의대학교 한방신약개발팀 (BK21 Team)) ;
  • 지선영 (대구한의대학교 안이비인후피부과교실)
  • Received : 2009.11.04
  • Accepted : 2009.11.30
  • Published : 2009.12.25

Abstract

Objectives : The present study was examined to evaluate the anti-inflammatory effects of the Gentianae Macrophyllae Radix MeOH extracts (GMR) in vivo. Methods : The effects of GMR on anti-inflammation were measured by production of NO, TNF-$\alpha$ (Tumor Necrosis Factor-alpha) and IL-$1{\beta}$ (Interleukin-$1{\beta}$), IL-6 in Raw 264.7 macrophage cells stimulated with LPS. Results : 1. All concentrations of GMR(0.10 mg/ml) had no significant cytotoxicity in Raw 264.7 cell during the entire experimental period. 2. The level of NO and iNOS in culture medium was dramatically increased by LPS application. However, these increases were dose-dependently(0.03 and 0.10 mg/ml) attenuated by treatment with GMR. 3. All concentrations of GMR significantly inhibited the production of IL-$1{\beta}$ in Raw 264.7 macrophage cells stimulated with LPS. Conclusions : These results provide evidences that therapeutic effect of GMR on heat syndrome, especially due to the acute inflammation, are partly due to the reduction of some of inflammatory factors by inhibiting iNOS and COX-2 through the suppression of $p-I{\kappa}B{\alpha}$. Moreover, it suggests that the mechanism of action of GMR comes from the suppression of inflammatory mediators, such as NO, PGE2 and pro-inflammatory cytokines.

Keywords

References

  1. 한국한의학연구원. 한약재관능검사기준연구. 서울. 1999:219-21.
  2. 본초학. 전국한의과대학 본초학교수. 서울. 영림사. 1995:264-5.
  3. Louise G. Hutchins. 本草中數種藥材對于大白 鼠體溫之影響. Chin. J. Physiol. 1937;11(1):35-40.
  4. 王浴生. 中藥藥理與應用. 北京. 人民衛生出版社. 1983:856-7.
  5. 劉壽山. 中藥硏究文獻摘要. 北京. 科學出版社. 1975:506-7.
  6. 康秉秀 外. 臨床配合本草學. 서울. 영림사. 1994:648-9.
  7. 김성재, 이언정, 김형균, 송봉근. 秦艽가 Collagen誘發 關節炎의 免疫反應에 미치는 影響. 대한한의학회지. 1998;19(1):368-84.
  8. Chun SC, Jee SY, Lee SG, Park SJ, Lee JR, Kim SC. Anti-Inflammatory Activity of the Methanol Extract of Moutan Cortex in LPS-Activated Raw 264.7 cells. Evid Based Complement Alternat Med. 2007;4(3):327-33. https://doi.org/10.1093/ecam/nel093
  9. Kawamata H, Ochiai H, Mantani N, Terasawa K. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated Raw 264.7 cells, a murine macrophage cell line. Am J Chin Med. 2000;28:217-26. https://doi.org/10.1142/S0192415X0000026X
  10. Lee BG, Kim SH, Zee OP, Lee KR, Lee HY, Han JW, Lee HW. Suppression of inducible nitric oxide synthase expression in Raw 264.7 macrophages by two-carboline alkaloids extracted from Melia azedarach. Eur J Pharmacol. 2000;406:301-9. https://doi.org/10.1016/S0014-2999(00)00680-4
  11. Yoon TG, Byun BH, Kwon TK, Suh SI, Byun SH, Kwon YK, Kim SC. Inhibitory effect of Farfarae Flos water extract on COX-2, iNOS expression and nitric oxide production in lipopolysaccharide-activated Raw 264.7 cells. Korean J Oriental Physiology & Pathology. 2004;18(3):908-13.
  12. 장선일, 김형진, 황기명, 배현옥, 윤용갑, 정헌택, 김윤철. 활성화된 설치류 Raw 264.7 대식 세포에서 당귀에탄올 추출물의 항염증 효과. 대한한의학방제학회지. 2002;10(2):189-97.
  13. Seo WG, Pae HO, Oh GS, Chai KY, Kwon TO, Yun YG , Kim NY, Chung HT. Inhibitory effects of methanol extract of Cyperus rotundus rhizomes on nitric oxide and superoxide production by murine macrophage cell line, Raw 264.7 cells. J Ethnopharmacol. 2001;76:59-64. https://doi.org/10.1016/S0378-8741(01)00221-5
  14. 이영선, 한옥경, 신상우, 박종현, 권영규. 향부자 열수추출물의 Nitric oxide 생성 및 iNOS 유전자 발현에 미치는 영향. 동의생리병리학회지. 2003;17(3):771-6.
  15. 陵昌洙. 漢藥의 藥理.成分.臨床應用. 서울. 癸丑文化社. 1982:494-5.
  16. 聶慶喜. 中藥材學. 北京. 科學出版社. 1993:129.
  17. 中華人民共和國衛生部藥典委員會. 北京. 中華人民共和國藥典. 人民衛生出版社. 1990:242-3.
  18. 吳普. 神農本草經. 서울. 醫道韓國社. 1976:10.
  19. Dan, B., Andrew, G. Materia Medica. Seattle. Eastland press. 1993:156-8.
  20. Wink DA, Mitchell JB. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998;25:434-56. https://doi.org/10.1016/S0891-5849(98)00092-6
  21. Kubes P. Inducible nitric oxide synthase: a little bit of good in all of us. Gut. 2000;47(1):6-9. https://doi.org/10.1136/gut.47.1.6
  22. Chiou WF, Chou CJ, Chen CF. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci. 2001;69(6):625-35. https://doi.org/10.1016/S0024-3205(01)01154-7
  23. Seo WG, Pae HO, Oh GS, Kim NY, Kwon TO, Shin MK, Chai KY, Chung HT. The aqueous extract of Rhodiola sachalinensis root enhances the expression of inducible nitric oxide synthase gene in RAW 264.7 macrophages. J Ethnopharmacol. 2001;76(1):119-23. https://doi.org/10.1016/S0378-8741(01)00220-3
  24. Lee YS, Kim HS, Kim SK, Kim SD. IL-6 mRNA expression in mouse peritoneal macrophages and NIH3T3 fibroblasts in response to Candida albicans. J Microbiol Biotechnol. 2000;10(1):8-15.
  25. Higuchi M, Higashi N, Taki H, Osawa T. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol. 1990;144(4):1425-31.
  26. 염정호, 오경재, 유영천. 니켈 및 코발트의 세포독성 기전에서 Nitric Oxide의 역할. 대한산업의학회지. 2001;13(3):274-85.
  27. McDaniel ML, Kwon G, Hill JR, Marshall CA, Corbett JA. Cytokines and nitric oxides in islet inflammation and diabetes. Proc Soc Exp Biol Med. 1996;211(1):24-32. https://doi.org/10.3181/00379727-211-43950D
  28. Cetkovic-Cvrlje M, Eizirik DL. TNF-$\alpha$ and IFN-$\gamma$ potentiate the deleterious effects of IL-$1{\beta}$ on mouse pancreatic islets mainly via generation of nitric oxide. Cytokine. 1994;6(4):399-406. https://doi.org/10.1016/1043-4666(94)90064-7
  29. Lee AK, Sung SH, Kim YC, Kim SG. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-$\alpha$ and COX-2 expression by sauchinone effects on I-${\kappa}B$ $\alpha$ phosphorylation, C/EBP and AP-1 activation. British Journal of Pharmacology. 2003;139:11-20. https://doi.org/10.1038/sj.bjp.0705231
  30. Delgado AV, McManus AT, Chambers JP. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides. 2003;37(6):355-61. https://doi.org/10.1016/j.npep.2003.09.005