• Title/Summary/Keyword: printed electronic circuit

Search Result 266, Processing Time 0.028 seconds

A study on the molding of dome shaped plastic parts embedded with electronic circuits (전자회로 일체형 돔 형상의 플라스틱 부품 성형에 관한 연구)

  • Seong, Gyeom-Son;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • Smart systems in different application areas such as automotive, medical and consumer electronics require a novel manufacturing method of electronic, optical and mechanical functions into products. Traditional methods including mechanical assembly, bonding of plastic and electronic circuit cause the problems in large size of products and complicated manufacturing processes. In this study, thermoforming and film insert molding were applied to fabricate a dome shaped plastic part embedded with electronic circuits. The deformation of patterns printed on PET film was predicted by thermoforming simulation using T-SIM, and the results were compared with those by experiment. In order to decrease spring-back after thermoforming, the Taguchi method of design of experiment was used. Through ANOVA analysis, it was found that mold temperature was the most dominant parameter for spring-back. By using flow analysis, gate design was performed to decrease injection pressure. During film insert molding, the wash-out of ink printed on film occurred for Polycarbonate. When the resin was changed to PMMA, the wash-out disappeared due to low melt temperature.

A CMOS Optical Receiver Design for Optical Printed Circuit Board (광PCB용 CMOS 광수신기 설계)

  • Kim Young;Kang Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.13-19
    • /
    • 2006
  • A 5Gb/s cross coupled transimpedance amplifier (TIA) & limiting amp(LA), regulated cascode(RGC) is realized in a 0.18$\mu$m CMOS technology for optical printed circuit board applications. The optical receiver demonstrates $92.8db{\Omega}$ transimpedance and limiting amplifier gain, 5Gb/s bandwidth for 0.5pF photodiode capacitance, and 9.74mW power dissipation from 1.8V, 2.4V supply. Input stage impedance is $50{\Omega}$. The circuit was implemented on an optical PCB, and the 5Gb/s data output signal was measured with a good data eye opening.

Estimating Fatigue Life of APD Electronic Equipment for Activation of a Spaceborne X-band 2-axis Antenna (2축 짐벌식 X-band 안테나 구동용 전장품 APD 제어보드의 피로수명 평가)

  • Jeon, Young-Hyeon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • While a satellite is carried into orbit by a launch vehicle, it is exposed to the severe launch environment with random vibrations and shock. Accordingly, these vibration sources affect electronic equipment, particularly the printed circuit board (PCB) in the satellite. When the launch load impacts the PCB, it causes negative behavior. This causes perpendicular bending around the boundary of fixation points that finally leads to the failure of solder joints, lead wires, and PCB cracks. To overcome these issues, the electronic equipment design must meet reliability requirements. In this paper, Steinberg's method is used to derive allowable and maximum deflection to verify design from a life perspective concerning the control board of the Antenna Pointing Driver (APD) mounted on KOMPSAT-3.

VCO fabrication using Microstrip Line operating at the UHF frequency band (UHF대역에서 동작하는 마이크로스트립라인을 이용한 VCO 제작)

  • Rhie, Dong Hee;Jung, Jin-Hwee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.55-58
    • /
    • 2001
  • In this paper, we present the results of the design and fabrication of the VCO(Voltage controlled Oscillator) using RF circuit simulator GENESYS and electromagnetic field simulator EMpower Frequency range is fabricated VCO is 850 MHz ~ 950 MHz, which is used Colpitts Circuit. the fabricated VCO is consisted of resonator, oscillator and MSL(Microstrip Line) is used in LC tuning circuit.(operated by negative feedback) MSL(Microstrip Line), Varactor(Plastic package), low noise TR(SOT-23), chip inductor(1608), chip capacitor(1005), chip resistance(1005). 1005 type is used for sample fabrication of VCO. In the fabrication process, circuit pattern is screen printed on the alumina substrates of over 99.9% purity. Center frequency of the sample VCO is 850MHz at $V_T=1.5V$, while the simulated value was 1.0GHz at $V_T=1.5V$. Variable frequency range of the sample is 860~950MHz in contrast to the 1068~1100MHz of the simulated values.

  • PDF

VCO fabrication using Microstrip Line operating at the UHF frequency band (UHF대역에서 동작하는 마이크로스트립라인을 이용한 VCO 제작)

  • Rhie, Dong-Hee;Jung, Jin-Hwee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.153-156
    • /
    • 2001
  • In this paper, we present the results of the design and fabrication of the VCO(Voltage controlled Oscillator) using RF circuit simulator GENESYS and electromagnetic field simulator EMpower Frequency range is fabricated VCO is 850 MHz ~ 950 MHz, which is used Colpitts Circuit. the fabricated VCO is consisted of resonator, oscillator and MSL(Microstrip Line) is used in LC tuning circuit.(operated by negative feedback) MSL(Microstrip Line), Varactor(Plastic package), low noise TR(SOT-23), chip inductor(1608), chip capacitor(1005), chip resistance(1005). 1005 type is used for sample fabrication of VCO. In the fabrication process, circuit pattern is screen printed on the alumina substrates of over 99.9% purity. Center frequency of the sample VCO is 850MHz at $V_T$=1.5V, while the simulated value was 1.0GHz at $V_T$=1.5V. Variable frequency range of the sample is 860~950MHz in contrast to the 1068~1100MHz of the simulated values.

  • PDF

The Electric Control Method on the Packaging Technology for Non-Conductive Materials Using the Surface Processing Cavity Pressure Sensor (표면 가공형 캐비티 압력센서를 이용하여 비전도성 물질용 패키지 기술에 전기적 제어방식 연구)

  • Lee, Sun-Jong;Woo, Jong-Chang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.350-354
    • /
    • 2020
  • In this study, a pressure sensor for each displacement was fabricated based on the silicon-based pressure sensor obtained through simulation results. Wires were bonded to the pressure sensor, and a piezoresistive pressure sensor was inserted into the printed circuit board (PCB) base by directly connecting a micro-electro-mechanical system (MEMS) sensor and a readout integrated circuit (ROIC) for signal processing. In addition, to prevent exposure, a non-conductive liquid silicone was injected into the sensor and the entire ROIC using a pipette. The packaging proceeded to block from the outside. Performing such packaging, comparing simple contact with strong contact, and confirming that the measured pulse wavelength appears accurately.

A Study on Dielectric Properties of Printed Circuit Board Materials with Variation of Frequency and Temperature (온도 및 주파수 변화에 따른 프린트 배선기판의 유전특성 연구)

  • 박종성;김종헌;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.773-777
    • /
    • 1998
  • This paper presents the results of measured permittivity of PCB sheet material in the frequency range of 0.1 ~ 2[㎓] and temperature range of 25~ 85[>$^{\circ}C$]. Microstrip lines with different physical length are implemented to measure the attenuation and phase shift of the signals through these lines. The loss factor of glass-epoxy and teflon could by calculated with the measured dielectric constant and the attenuation. From the experiment, the glass-epoxy was more influenced by temperature and frequency than teflon. The average dielectric constants of glass-epoxy and teflon within the measured frequency range are 4.48 and 2.18, respectively.

  • PDF

Study on the MTTF of Multi Wave Lengths IR and NIR LEDs Module (다파장 IR과 NIR 모듈의 평균 수명 예측에 관한 연구)

  • Kim, Dong Pyo;Kim, Kyung Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.44-49
    • /
    • 2021
  • Recently, infrared (IR) and near-infrared (NIR) light-emitting diodes (LEDs) were widely used for home medical applications owing to its low output power and wide exposed area for curing. For deep penetration of the light under the skin, multiple LEDs with wavelengths of 700~10,000 nm were located on a flexible printed circuit board. When multiple wavelengths of LEDs were soldered on a circuit board, the lifetime of LED module highly depends on LEDs with a short lifetime. The mean time to failure (MTTF) was able to calculate with the experimental results under high temperature and the Arrhenius model. The results of this study could help companies to approve the warranty of LED modules and its product.

Analysis on the Thermal Response of Electronic Assemblies during Forced Convection-Infrared Reflow Soldering (강제대류-적외선 리플로 솔더링시 전자조립품의 열적반응 분석)

  • 손영석;신지영
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.46-54
    • /
    • 2003
  • The thermal response of electronic assemblies during forced convection-infrared reflow soldering is studied. Soldering for attaching electronic components to printed circuit boards is performed in a process oven that is equipped with porous panel heaters, through which air is injected in order to dampen temperature fluctuations in the oven which can be established by thermal buoyancy forces. Forced convection-infrared reflow soldering process with air injection is simulated using a 2-dimensional numerical model. The multimode heat transfer within the reflow oven as well as within the electronic assembly is simulated. Parametric study is also performed to study the effects of various conditions such as conveyor speed, blowing velocity, and electronic assembly emissivity on the thermal response of electronic assemblies. The results of this study can be used in the process oven design and selecting the oven operating conditions to ensure proper solder melting and solidification.

Recycling of Separate Glass Fiber from Waste Printed Circuit Boards Using Attrition Mill and DMF (어트리션 밀과 DMF 용매를 이용한 폐 인쇄회로기판에서 분리된 재생 유리섬유의 재활용)

  • Kim, Jong-Seok;Lee, Jae-Cheon;Jeong, Jin-Ki
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.894-899
    • /
    • 2012
  • In recent years, recycling process has come to be necessary for separating metals, glass fibers and polymer from WPCBs (waste printed circuit boards) due to an increasing amount of electronic device waste. In this study, dimethylformamide (DMF) and attrition mill reactor were used to separate the component such as metals, glass fiber and epoxy resin from WPCBs. Separation of glass fiber from WPCBs was carried out under stirring rates 300~600 revolution per minute (rpm) for 1~2 h as the various agitator. The recycled glass fibers (RGF) were analyzed by thermogravimetric analyzer (TGA) for degree of separation of epoxy resin in the WPCBs. The degree of separation of epoxy resin of WPCBs increased in attrition mill agitator as a mechanochemical process for recycling WPCBs. The RGF separated in the WPCBs was applied as a reinforcement in the RGF/unsaturated polyester composites to reuse as a reinforcement.