• Title/Summary/Keyword: primes

Search Result 112, Processing Time 0.018 seconds

ON THE SEVERAL DIFFERENCES BETWEEN PRIMES

  • Park, Yeonyong;Lee, Heonsoo
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.37-51
    • /
    • 2003
  • Enumeration of the primes with difference 4 between consecutive primes, is counted up to 5${\times}$10$\^$10/, yielding the counting function ,r2,4(5${\times}$10$\^$10/) = l18905303. The sum of reciprocals of primes with gap 4 between consecutive primes is computed B$_4$(5 ${\times}$ 10$\^$10/) = 1.1970s4473029 and B$_4$ = 1.197054 ${\pm}$ 7 ${\times}$ 10$\^$-6/. And Enumeration of the primes with difference 6 between consecutive primes, is counted up to 5${\times}$10$\^$10/, yielding the counting function $\pi$$\_$2.6/(5${\times}$10$\^$10/) = 215868063. The sum of reciprocals of primes with gap 6 between consecutive primes is computed B$\_$6/(5${\times}$10$\^$10/) = 0.93087506039231 and B$\_$6/ = 1.135835 ${\pm}$ 1.2${\times}$10$\^$-6/.

ON THE PRIMES WITH $P_{n+1}-P_n = 8$ AND THE SUM OF THEIR RECIPROCALS

  • Lee Heon-Soo;Park Yeon-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.441-452
    • /
    • 2006
  • We introduce the counting function ${\pi}^*_{2.8}(x)$ of the primes with difference 8 between consecutive primes ($p_n,\;p_{n+l}=p_n+8$) can be approximated by logarithm integral $Li^*_{2.8}$. We calculate the values of ${\pi}^*_{2.8}(x)$ and the sum $C_{2,8}(x)$ of reciprocals of primes with difference 8 between consecutive primes $p_n,\;p_{n+l}=p_n+8$ where x is counted up to $7{\times}10^{10}$. From the results of these calculations. we obtain ${\pi}^*_{2.8}(7{\times}10^{10}$)= 133295081 and $C_{2.8}(7{\times}10^{10}) = 0.3374{\pm}2.6{\times}10^{-4}$.

A study on the approximation function for pairs of primes with difference 10 between consecutive primes (연속하는 두 소수의 차가 10인 소수 쌍에 대한 근사 함수에 대한 연구)

  • Lee, Heon-Soo
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.49-57
    • /
    • 2020
  • In this paper, I provided an approximation function Li*2,10(x) using logarithm integral for the counting function π*2,10(x) of consecutive deca primes. Several personal computers and Mathematica were used to validate the approximation function Li*2,10(x). I found the real value of π*2,10(x) and approximate value of Li*2,10(x) for various x ≤ 1011. By the result of theses calculations, most of the error rates are margins of error of 0.005%. Also, I proved that the sum C2,10(∞) of reciprocals of all primes with difference 10 between primes is finite. To find C2,10(∞), I computed the sum C2,10(x) of reciprocals of all consecutive deca primes for various x ≤ 1011 and I estimate that C2,10(∞) probably lies in the range C2,10(∞)=0.4176±2.1×10-3.

TORSION POINTS OF ELLIPTIC CURVES WITH BAD REDUCTION AT SOME PRIMES II

  • Yasuda, Masaya
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.83-96
    • /
    • 2013
  • Let K be a number field and fix a prime number $p$. For any set S of primes of K, we here say that an elliptic curve E over K has S-reduction if E has bad reduction only at the primes of S. There exists the set $B_{K,p}$ of primes of K satisfying that any elliptic curve over K with $B_{K,p}$-reduction has no $p$-torsion points under certain conditions. The first aim of this paper is to construct elliptic curves over K with $B_{K,p}$-reduction and a $p$-torsion point. The action of the absolute Galois group on the $p$-torsion subgroup of E gives its associated Galois representation $\bar{\rho}_{E,p}$ modulo $p$. We also study the irreducibility and surjectivity of $\bar{\rho}_{E,p}$ for semistable elliptic curves with $B_{K,p}$-reduction.

THE GENERALIZATION OF CLEMENT'S THEOREM ON PAIRS OF PRIMES

  • Lee, Heon-Soo;Park, Yeon-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.89-96
    • /
    • 2009
  • In this article, we show a generalization of Clement's theorem on the pair of primes. For any integers n and k, integers n and n + 2k are a pair of primes if and only if 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) whenever (n, (2k)!) = (n + 2k, (2k)!) = 1. Especially, n or n + 2k is a composite number, a pair (n, n + 2k), for which 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) is called a pair of pseudoprimes for any positive integer k. We have pairs of pseudorimes (n, n + 2k) with $n{\leq}5{\times}10^4$ for each positive integer $k(4{\leq}k{\leq}10)$.

  • PDF

SOME REMARKS ON COAASSOCIATED PRIMES

  • Divaani-Aazar, K.;Tousi, M.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.847-853
    • /
    • 1999
  • The purpose of this paper is to develop the theory of coassociated primes and to investigate Melkersson's question [8].

  • PDF