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ALMOST-PRIMES REPRESENTED BY p+ am

Yaming Lu

Abstract. Let a > 2 be a fixed integer in this paper. By using the
method of Goldston, Pintz and Yıldırım, we will prove that there are
infinitely many almost-primes which can be represented as p + am

in at least two different ways.

1. Introduction

In 1934, Romanoff [9] proved that the integers of the form p+2m have
a positive density. Thereafter, many works have been done involving the
so-called Romanoff’s constant:

c = lim inf
x→∞

#{n 6 x : n = p+ 2m}
x

.

For example, Chen and Sun [1] proved that c > 0.0868, this result is im-
proved by Habsieger and Roblot [6] to 0.0933 and by Pintz [7] to 0.09368.
Their works mainly based on studying the mean values involving r(n),
the number of different representations of n in the form p+ 2m.

Prachar [8] studied a more generalized problem. He proved that if
a > 1 and (mj) is a strictly increasing sequence of non-negative integers,
then the number of distinct integers 6 x which can be expressed in the
form p+ amj is

� x

log x
#{mj : amj 6 x}.
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In this paper, we take interest in almost-primes with r(n) > 2. It is
early in 1950 that Erdös [2] proved that there are infinitely many integers
satisfying

r(n)� log log n,

but his method can not be applied to attack the problem on almost-
primes. The main result of this paper is the following theorem:

Theorem 1.1. Let a > 2 be an fixed integer. Then there exists a pos-
itive integer R, such that there are infinitely many integers n satisfying:

(1) n has at most R distinct prime divisors;
(2) n can be represented as p+ am in at least two different ways.

We should mention to Friedlander and Iwaniec [4] who claimed: “We
believe (although we did not check all details) that the method presented
here can, when combined with the Fundamental Lemma, produce infin-
itely many almost-prime integers which have two different representa-
tions in the form p + am. ” Therefore, what we do in this paper is just
to “check the details”.

Throughout the paper, we denote ε to be a sufficiently small positive
real number, and write

Λ[(n) =

{
log n, if n is a prime,

0, otherwise.

As usual, τk(n) is the divisor function and ϕ(n) is the Euler’s function.

2. Basic Considerations

The proof of Theorem 1.1 is based on the lower-bound sieve and the
method of Goldston, Pintz and Yıldırım (see eg. [4], [5] and [10]).

Let N be a sufficiently large integer, we write

M =
{
am : 1 6 m 6

logN

2 log a

}
and H = {am : 1 6 m 6 k} a subset of M. Let

Q(X) =
∏

16j6k

(X − aj),

and ω(d) denote the number of solutions n (mod d) ofQ(n) ≡ 0 (mod d).
Note that if p | a, then ω(p) = 1; if p - a, then ω(p) < p since Q(0) 6≡ 0
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(mod p). Therefore, ω(p) < p for every prime p, in another word, H is
“admissible”.

We write

detH =
∑

16i<j6k

(aj − ai)2 = ak(k−1)
∏

16j6k−1

(aj − 1)2(k−j),

and let ∆ be the product of all prime divisors of a and all primes p for
which aj ≡ 1 (mod p) with some 1 6 j 6 k. Then we can easily check
the following three things:

(i) Since H is admissible, ∆ is divisible by all primes p 6 k + 1. In
practice, we shall choose k to be an even integer, therefore k + 2 is not
a prime.

(ii) If p - ∆, then ω(p) = k.
(iii) For any am ∈M, we have ∆ | Q(am) since

Q(am) =
∏

16j6k

(
am − aj

)
= ak(k+1)/2

∏
m−k6j6m−1

(
aj − 1

)
.

Now we consider the sequence (an) supported on the dyadic segment
(N

2
, N ] as well as (Q(n),∆) = 1 with

(2.1) an =

( ∑
am∈M

Λ[(n− am)− logN

)( ∑
ν|Q(n)

λν

)
,

where (λν) is an upper-bound sieve supported on squarefree numbers

ν < D = N
1
2
−2ε, (ν,∆) = 1, whence the summation over ν is non-

negative. Here we choose (λν) to be the Selberg’s Λ2-sieve, that is∑
ν|n

λν =

(∑
d|n

ρd

)2

where (ρd) is a sequence of real numbers supported on squarefree num-

bers d with d <
√
D, (d,∆) = 1 which satisfies ρ1 = 1 and

(2.2) |ρd| 6 1

for all d (see Lemma 6.1). Thus

(2.3) λν =
∑

[d1,d2]=ν

ρd1ρd2
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and |λν | 6 τ3(ν) for all ν. If we can give a proper lower bound for the
number of almost-primes n such that an > 0, we will prove Theorem 1.1.
Therefore, we need to apply a lower-bound sieve to n.

Let

T = {N/2 < n 6 N : (Q(n),∆) = 1},

T1 = T ∩
{
n :

∑
am∈M

Λ[(n− am)− logN > 0
}
,

T2 = T ∩
{
n :

∑
am∈M

Λ[(n− am)− logN 6 0
}
,

and A = (an)n∈T1 . We choose the sifting set P = {p > k + 2 : p - a}
since it is easy to deduce (n, a) = 1 from (Q(n),∆) = 1, and as usual,
denote

P (z) =
∏
p<z

p∈P

p.

Let (λ′d) be a lower-bound sieve of level D′ = N ε, then the sifting func-
tion

(2.4)

S(A,P , z) =
∑
n∈T1

(n,P (z))=1

an >
∑
n∈T1

an
∑

d|(n,P (z))

λ′d

=
∑
n∈T

an
∑

d|(n,P (z))

λ′d −
∑
n∈T2

an
∑

d|(n,P (z))

λ′d = S1 − S2

say. If we can produce a positive lower bound of S(A,P , z) for z = D′
1
s ,

we will deduce that there are infinitely many integers n which have at
most sε−1 + k + 2 distinct prime factors and satisfy an > 0.

Now we give a careful look at S2, we write

T21 = {n ∈ T2 : n− am is not a prime for any am ∈M},

T22 = T2 \ T21 = {n ∈ T2 : ∃ am ∈M, such that n− am is a prime}.
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Then,

−
∑
n∈T21

an
∑

d|(n,P (z))

λ′d = (logN)
∑
n∈T21

( ∑
ν|Q(n)

λν

)( ∑
d|(n,P (z))

λ′d

)

= (logN)
∑

N/2<n6N

(Q(n),∆)=1

( ∑
ν|Q(n)

λν

)( ∑
d|(n,P (z))

λ′d

)

− (logN)
∑

N/2<n6N

(Q(n),∆)=1

∃ am∈M, s.t. n−am is prime

( ∑
ν|Q(n)

λν

)( ∑
d|(n,P (z))

λ′d

)

> (logN)
∑

N/2<n6N

(Q(n),∆)=1

( ∑
ν|Q(n)

λν

)( ∑
d|(n,P (z))

λ′d

)
− (logN)

∑
N/2<n6N

(Q(n),∆)=1

(n,P (z))=1

( ∑
ν|Q(n)

λν

)
.

Noticing that

S1 =
∑

N/2<n6N

(Q(n),∆)=1

∑
am∈M

Λ[(n− am)

( ∑
ν|Q(n)

λν

)( ∑
d|(n,P (z))

λ′d

)

− (logN)
∑

N/2<n6N

(Q(n),∆)=1

( ∑
ν|Q(n)

λν

)( ∑
d|(n,P (z))

λ′d

)
,

we finally get from (2.4) that
(2.5)

S(A,P , z) >
∑

N/2<n6N

(Q(n),∆)=1

∑
am∈M

Λ[(n− am)

( ∑
ν|Q(n)

λν

)( ∑
d|(n,P (z))

λ′d

)

− (logN)
∑

N/2<n6N

(Q(n),∆)=1

(n,P (z))=1

( ∑
ν|Q(n)

λν

)
−
∑
n∈T22

an
∑

d|(n,P (z))

λ′d

= S3 − S4 − S5
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say.
Before doing further calculations, we should study the reduced com-

position of sieve-twisted sums.

3. Reduced Composition of Sieves

Let (λd) be a finite sequence supported on squarefree numbers and
write

θn =
∑
d|n

λd.

For g(d) a multiplicative function supported on finite set of squarefree
numbers with 0 6 g(p) < 1, we denote h(d) the multiplicative function
supported on squarefree numbers with

h(p) =
g(p)

1− g(p)
.

We call g a density function and h the relative density function of g.
Now we consider the sieve-twisted sum

G =
∑
d

λdg(d).

Lemma 3.1. It holds that

(3.1) G = V G∗,

where

(3.2) V =
∏
p

(1− g(p)) and G∗ =
∑
d

θdh(d).

Proof. This is Lemma A.1 of [3].

Next, we consider the reduced composition of two sieve-twisted sums
of the following type:

(3.3) G′ ∗G′′ =
∑∑
(d1,d2)=1

λ′d1λ
′′
d2
g′(d1)g′′(d2).

We have
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Lemma 3.2.

(3.4) G′ ∗G′′ =
∑∑
(b1,b2)=1

θ′b1θ
′′
b2
g′(b1)g′′(b2)

∏
p-b1b2

(1− g′(p)− g′′(p)).

Proof. This is Lemma A.2 of [3].

Now assume that (λ′) is an upper-bound sieve (either from the beta-
sieve or from the Selberg’s sieve), (λ′′) is a beta-sieve of level D′′, while
g′′ is supported on the divisors of P (z′′) =

∏
p<z′′

p for some z′′ 6 D′′ and

satisfying

(3.5)
∏

w6p<w′

(1− g(p))−1 6

(
logw′

logw

)κ(
1 +O

( 1

logw

))

for some κ > 0 and any 0 < w < w′. If we denote by h(1)(d) and h(2)(d)
the multiplicative functions supported on squarefree numbers with

h(1)(p) =
g′(p)

1− g′(p)− g′′(p)
and h(2)(p) =

g′′(p)

1− g′(p)− g′′(p)
,

then we get (at primes)

(3.6) g(1) =
h(1)

1 + h(1)
=

g′

1− g′′
and g(2) =

h(2)

1 + h(2)
=

g′′

1− g′

respectively. Thus Lemma 3.2 indicates
(3.7)

G′ ∗G′′ =
∏
p

(1− g′(p)− g′′(p))
∑∑
(b1,b2)=1

θ′b1θ
′′
b2
h(1)(b1)h(2)(b2)

=
∏
p

(1− g′(p)− g′′(p))
∑
b1

θ′b1h
(1)(b1)

∑
(b2,b1)=1

θ′′b2h
(2)(b2).

From Lemma 3.1 and the Fundamental Lemma of the sieve we know
that∑

(b2,b1)=1

θ′′b2h
(2)(b2) =

∏
p-b1

(1− g(2)(p))−1
∑

(d,b1)=1

λ′′dg
(2)(d) = 1 +O(e−s

′′
),
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provided that s′′ = logD′′/ log z′′ is sufficiently large. Inserting this into
(3.7) and noticing that θ′b1 > 0, we obtain

G′ ∗G′′ = (1 +O(e−s
′′
))
∏
p

(1− g′(p)− g′′(p))
(∑

b1

θ′b1h
(1)(b1)

)
= (1 +O(e−s

′′
))
∏
p

(1− g′(p)− g′′(p))(1− g(1))−1

(∑
d

λ′(d)g(1)(d)

)
= (1 +O(e−s

′′
))
∏
p

(1− g′′(p))
(∑

d

λ′(d)g(1)(d)

)
.

Therefore, we conclude:

Proposition 3.3. Suppose that (λ′) is an upper-bound sieve, (λ′′) is
a beta-sieve of level D′′. Let g′′ be a density function supported on the
divisors of P (z′′) for some z′′ 6 D′′. Then

(3.8) G′ ∗G′′ = (1 +O(e−s
′′
))V ′′G(1)

provided that s′′ = logD′′/ log z′′ is sufficiently large, where

V ′′ =
∏
p

(1− g′′(p)), G(1) =
∑
d

λ′(d)g(1)(d)

with g(1) defined in (3.6).
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4. Estimation of S5

From (2.5) we know that

|S5| =

∣∣∣∣∣ ∑
n∈T22

( ∑
am∈M

Λ[(n− am)− logN

)( ∑
ν|Q(n)

λν

)( ∑
d|(n,P (z))

λ′d

)∣∣∣∣∣
6
∑
n∈T22

log
N

N
2
−
√
N

( ∑
ν|Q(n)

λν

)∣∣∣∣ ∑
d|(n,P (z))

λ′d

∣∣∣∣
6

(
log 2 +O

( 1√
N

)) ∑
N/2<n6N

(Q(n),∆)=1

( ∑
ν|Q(n)

λν

)∣∣∣∣ ∑
d|(n,P (z))

λ′d

∣∣∣∣
=

(
log 2 +O

( 1√
N

))[ ∑
N/2<n6N

(Q(n),∆)=1

(n,P (z))=1

∑
ν|Q(n)

λν

−
∑

N/2<n6N

(Q(n),∆)=1

(n,P (z))>1

( ∑
ν|Q(n)

λν

)( ∑
d|(n,P (z))

λ′d

)]

=

(
log 2 +O

( 1√
N

))[
2

∑
N/2<n6N

(Q(n),∆)=1

(n,P (z))=1

∑
ν|Q(n)

λν

−
∑

N/2<n6N

(Q(n),∆)=1

( ∑
ν|Q(n)

λν

)( ∑
d|(n,P (z))

λ′d

)]

=

(
log 2 +O

( 1√
N

))
(2S51 − S52)

say. In order to estimate S51, we introduce an upper-bound beta-sieve
(λ′′) of level D′. Then
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S51 6
∑

N/2<n6N

(Q(n),∆)=1

( ∑
ν|Q(n)

λν

)( ∑
d|(n,P (z))

λ′′d

)

=
∑
d|P (z)

λ′′d
∑

(ν,∆d)=1

λν
∑

N/2<n6N

(Q(n),∆)=1

Q(n)≡0 (mod ν)

n≡0 (mod d)

1.

Notice that the condition (ν, d) = 1 is automatical since d | n, ν | Q(n)
and (d, a) = 1. The innermost sum can be represented as∑

α (mod ∆)

(Q(α),∆)=1

α≡0 (mod (∆,d))

∑
β (mod ν)

Q(β)≡0 (mod ν)

∑
N/2<n6N

n≡α (mod ∆)

n≡β (mod ν)

n≡0 (mod d)

1

=
∑

α (mod ∆)

(Q(α),∆)=1

α≡0 (mod (∆,d))

∑
β (mod ν)

Q(β)≡0 (mod ν)

(
N/2

ν[∆, d]
+O(1)

)
,

where
(4.1) ∑

α (mod ∆)

(Q(α),∆)=1

α≡0 (mod (∆,d))

1 =
∑

α (mod ∆)

α≡0 (mod (∆,d))

∑
δ|(Q(α),∆)

µ(δ) =
∑
δ|∆

(δ,d)=1

µ(δ)
∑

α (mod ∆)

α≡0 (mod (∆,d))

Q(α)≡0 (mod δ)

1

=
∑
δ|∆

(δ,d)=1

µ(δ) · ∆

(∆, d)δ
ω(δ) =

∆

(∆, d)

∏
p|∆
p-d

(
1− ω(p)

p

)

=
∆

(∆, d)
γ(H)

∏
p|(∆,d)

(
1− ω(p)

p

)−1

with

γ(H) =
∏
p|∆

(
1− ω(p)

p

)
.
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Moreover, from (ν,∆) = 1 we know that∑
β (mod ν)

Q(β)≡0 (mod ν)

1 = τk(ν).

Therefore, summing up the above four formulae we get

S51 6 γ(H)
∑
d|P (z)

∑
(ν,∆d)=1

λνλ
′′
d

∆

(∆, d)
τk(ν)

×
(

N/2

ν[∆, d]
+O(1)

) ∏
p|(∆,d)

(
1− ω(p)

p

)−1

.

Since |λν(d)| 6 τ3(d) and |λ′′d| 6 1, we have

S51 6
N

2
γ(H)

∑
d|P (z)

∑
(ν,∆d)=1

λνλ
′′
d

τk(ν)

dν

∏
p|(∆,d)

(
1− ω(p)

p

)−1

+O

(
γ(H)

∑
d<D′

∑
ν<D

τ3(ν)τk(ν)
∆

(∆, d)

∏
p|(∆,d)

(
1− ω(p)

p

)−1)

=
N

2
γ(H)

∑
d|P (z)

∑
(ν,∆d)=1

λνλ
′′
d

τk(ν)

dν

∏
p|(∆,d)

p

p− ω(p)
+O(∆DD′(logD)3k−1).

From Proposition 3.3 we get for sufficiently large s that

(4.2) S51 6 (1 +O(e−s))
N

2
γ(H)G1V (z) +O(∆DD′(logD)3k−1),

where

(4.3) V (z) =
∏
p<z

p-∆

(
1− 1

p

) ∏
k+26p<z
p|∆,p-a

(
1− 1

p− ω(p)

)

and

(4.4) G1 =
∑
ν<D

(ν,∆)=1

λν
τk(ν)

ϕ(ν)
.

Analogously,

S52 = (1 +O(e−s))
N

2
γ(H)G1V (z) +O(∆DD′(logD)3k−1).
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Therefore,

(4.5) S5 � Nγ(H)G1V (z) +N1− ε
2 .

5. Evaluation of S3 and S4

First, we mention that S4 = S51 logN , where S51 is defined in the
previous section. Thus (4.2) implies that

(5.1) S4 6 (1 +O(e−s))
N logN

2
γ(H)G1V (z) +O(∆DD′(logN)3k).

In order to calculate S3, we change the order of summation to get

(5.2) S3 =
∑
d|P (z)

λ′d
∑
am∈M

U
(m)
d ,

where

(5.3) U
(m)
d =

∑
N/2<n6N

(Q(n),∆)=1

n≡0 (mod d)

Λ[(n− am)

( ∑
ν|Q(n)

λν

)
.

Next we come to the evaluation of U
(m)
d .

U
(m)
d =

∑
(ν,∆d)=1

λν
∑

α (mod ∆)

(Q(α),∆)=1

α≡0 (mod (∆,d))

∑
β (mod ν)

Q(β)≡0 (mod ν)

∑
N/2<n6N

n≡α (mod ∆)

n≡β (mod ν)

n≡0 (mod d)

Λ[(n− am)
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We write R1 to be the summation with (β − am, ν) > 1, then

R1 =
∑

(ν,∆d)=1

λν
∑
p|ν

log p
∑

α (mod ∆)

(Q(α),∆)=1

α≡0 (mod (∆,d))

α−am≡p (mod ∆)

∑
β (mod ν)

Q(β)≡0 (mod ν)

(β−am,ν)=p

∑
N/2<n6N
n−am=p

n≡β (mod ν)

n≡0 (mod d)

1

�
∑
ν<D

τ3(ν)τk(ν)
∑
p|ν

p≡−am (mod d)

log p

�
∑
p<D

p≡−am (mod d)

τ3(p)τk(p) log p
∑
ν<D/p

τ3(ν)τk(ν)

� D(logD)3k−1
∑
p<D

p≡−am (mod d)

log p

p
� D(logD)3k

ϕ(d)
,

where the implied constant depends only on k. If we denote by R2 the
summation with (β − am, ν) = 1 and (α− am,∆) > 1, then

R2 =
∑

(ν,∆d)=1

λν
∑
p|∆

log p
∑

α (mod ∆)

(Q(α),∆)=1

α≡0 (mod (∆,d))

(α−am,∆)=p

∑
β (mod ν)

Q(β)≡0 (mod ν)

(β−am,ν)=1

β−am≡p (mod ν)

∑
N/2<n6N
n−am=p

n≡α (mod ∆)

n≡0 (mod d)

1

�
∑
ν<D

τ3(ν)
∑
p|∆

p≡−am (mod d)

ϕ
(∆

p

)
log p

� D(logD)2ϕ(∆)
∑
p|∆

p≡−am (mod d)

log p

p− 1
� ∆D(logD)3 log ∆.

Therefore we conclude that
(5.4)

U
(m)
d =

∑
(ν,∆d)=1

λν
∑

α (mod ∆)

((α−am)Q(α),∆)=1

α≡0 (mod (∆,d))

∑
β (mod ν)

Q(β)≡0 (mod ν)

(β−am,ν)=1

∑
N/2<n6N

n≡α (mod ∆)

n≡β (mod ν)

n≡0 (mod d)

Λ[(n− am)

+O
(
D(logD)3k

)
,
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where the implied constant depends only on k.

For (b, q) = 1, we write

E(x, q; b) =
∑
n6x

n≡b (mod q)

Λ[(n)− x

ϕ(q)

as usual. Then

(5.5)

U
(m)
d =

∑
(ν,∆d)=1

λν
∑

α (mod ∆)

((α−am)Q(α),∆)=1

α≡0 (mod (∆,d))

∑
β (mod ν)

Q(β)≡0 (mod ν)

(β−am,ν)=1

N/2

ϕ(ν[∆, d])
+R

(m)
d

+O
(
D(logD)3k

)
,

where
(5.6)

R
(m)
d =

∑
(ν,∆d)=1

λν

×
∑

α (mod ∆)

((α−am)Q(α),∆)=1

α≡0 (mod (∆,d))

∑
β (mod ν)

Q(β)≡0 (mod ν)

(β−am,ν)=1

(
E(N, ν[∆, d]; b)− E(N/2, ν[∆, d]; b)

)

with b the residue class modulo ν[∆, d] satisfying b ≡ α− am (mod ∆),
b ≡ β−am (mod ν) and b ≡ −am (mod d). Notice that we include in the
error term a few terms for Λ[(n) with n in the intervals (N/2, N/2 +am]
and (N,N + am].

We can easily deduce that for every m∑
d

λ′dR
(m)
d � ∆

∑
q6∆DD′

τk+3(q) max
(b,q)=1

(
|E(N, q; b)|+ |E(N/2, q; b)|

)
,

while by Cauchy’s inequality and E(N, q; b)� N/ϕ(q)∑
q6∆DD′

τk+3(q) max
(b,q)=1

|E(N, q; b)|

6

( ∑
q6∆DD′

τ 2
k+3(q)N

ϕ(q)

) 1
2
( ∑
q6∆DD′

max
(b,q)=1

|E(N, q; b)|
) 1

2

,
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and the Bombieri-Vinogradov theorem indicates

∑
q6∆DD′

τk+3(q) max
(b,q)=1

|E(N, q; b)| � N

(logN)A+1

for any positive real number A. The same estimate holds for the sum
involving E(N/2, q; b). Therefore,

(5.7)
∑
d

λ′dR
(m)
d � N

(logN)A+1
.

In order to calculate the main term in (5.5), we need to evaluate the
sum over α and β respectively. Since ∆ | Q(am) for any m, we have

∑
α (mod ∆)

((α−am)Q(α),∆)=1

α≡0 (mod (∆,d))

1 =
∑

α (mod ∆)

(Q(α),∆)=1

α≡0 (mod (∆,d))

1 =
∆

(∆, d)
γ(H)

∏
p|(∆,d)

(
1− ω(p)

p

)−1

by (4.1). For squarefree number ν satisfying (ν,∆) = 1, we write

τ
(m)
k (ν) =

∑
β (mod ν)

Q(β)≡0 (mod ν)

(β−am,ν)=1

1,

then τ
(m)
k (ν) = τk(ν1)τk−1(ν2) where ν = ν1ν2 with (ν1, Q(am)) = 1 and

ν2 | Q(am). Therefore the main term in (5.5) is equal to

∆Nγ(H)

2ϕ([∆, d]) · (∆, d)

∏
p|(∆,d)

(
1− ω(p)

p

)−1 ∑
(ν,∆d)=1

λν
τ

(m)
k (ν)

ϕ(ν)

=
∆Nγ(H)

2ϕ(∆)
· 1

ϕ(d)

∏
p|(∆,d)

(
1− 1

p

)(
1− ω(p)

p

)−1 ∑
(ν,∆d)=1

λν
τ

(m)
k (ν)

ϕ(ν)
.
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Summing over d, we get from Proposition 3.3 that
(5.8)∑

d

λ′dU
(m)
d = (1 +O(e−s))

∆Nγ(H)

2ϕ(∆)
G(m)

∏
p<z

p-∆

(
1− 1

p− 1

)

×
∏
p<z

p|∆,p-a

(
1− 1

p− ω(p)

)
+O

(
N

(logN)A+1

)
,

> (1 +O(e−s))
∆Nγ(H)

2ϕ(∆)
G(m)V (z) +O

(
N

(logN)A+1

)
where

G(m) =
∑
ν<D

(ν,∆)=1

λν
τ

(m)
k (ν)

f(ν)

with f(ν) the multiplicative function satisfying f(p) = p − 2, and the
error term mainly comes from (5.7).

Combining (5.1), (5.2) and (5.8) we finally arrive at
(5.9)

S3 − S4 > (1 +O(e−s))
Nγ(H)V (z)

2

(
∆

ϕ(∆)

∑
am∈H

G2

+
∆

ϕ(∆)

∑
am∈M\H

G3 −G1 logN

)
+O

(
N

(logN)A+1

)
,

where V (z) is given in (4.3) and
(5.10)

G2 =
∑
ν<D

(ν,∆)=1

λν
τk−1(ν)

f(ν)
, G3 =

∑
ν<D

(ν,∆)=1

λν
τ

(m)
k (ν)

f(ν)
(am ∈M \H).

6. Choosing the Sifting Weights

In this section, we will choose the parameters λν and give asymptotic
formulae for G1 and G2. We follow the way given in [4].
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Denote

g1(ν) =
τk(ν)

ϕ(ν)
, g2(ν) =

τk−1(ν)

f(ν)
,

and

g3(ν) =
τ

(m)
k (ν)

f(ν)
(am ∈M \H),

let hi(ν) be the relative density function of gi(ν). It is well-known from
the Selberg’s Λ2-sieve theory that

(6.1) G1 =
∑
c<
√
D

(c,∆)=1

h1(c)y2
c ,

where

yc =
µ(c)

h1(c)

∑
m≡0 (mod c)

ρmg1(m).

Using the Möbius inversion formula on divisor-closed set we obtain

(6.2) ρm =
µ(m)

g1(m)

∑
c≡0 (mod m)

h1(c)yc.

Therefore the initial condition ρ1 = 1 is equivalent to

(6.3)
∑
c<
√
D

(c,∆)=1

h1(c)yc = 1.

Now we choose

(6.4) yc =
1

Y

(
log

√
D

c

)`
,

for squarefree c 6
√
D, (c,∆) = 1 and yc = 0 otherwise. Inserting this

into (6.3) we find that

(6.5) Y =
∑
c<
√
D

(c,∆)=1

[
h1(c)

(
log

√
D

c

)`
,

where
∑[ means the summation goes through squarefree integers. Be-

fore going further, we give a result involving the sieve weight constituents
which verifies (2.2).

Lemma 6.1. For any integer m > 1, we have |ρm| 6 1.



124 Yaming Lu

Proof. From (6.2) and (6.4) we know that

ρm =
µ(m)h1(m)

Y g1(m)

∑
c<
√
D/m

(c,∆m)=1

[
h1(c)

(
log

√
D

cm

)`
.

Then the desired result follows from

Y =
∑
u|m

∑
c<
√
D

(c,∆)=1

(c,m)=u

[
h1(c)

(
log

√
D

c

)`
=
∑
u|m

h1(u)
∑

c<
√
D/u

(c,∆m)=1

[
h1(c)

(
log

√
D

cu

)`

>

(∑
u|m

h1(u)

) ∑
c<
√
D/m

(c,∆m)=1

[
h1(c)

(
log

√
D

cm

)`

=
h1(m)

g1(m)

∑
c<
√
D/m

(c,∆m)=1

[
h1(c)

(
log

√
D

cm

)`
.

In order to calculate the sum in (6.5), we introduce the following
lemma.

Lemma 6.2. Let κ and ` be positive integers and assume g is a mul-
tiplicative function supported on squarefree numbers such that

(6.6) g(p) =
κ

p
+O

(
1

p2

)
, κ > 1.

Then, for x > 2,

(6.7)
∑
m6x

(m,∆)=1

[
g(m)

(
log

x

m

)`
= S

`!

(`+ κ)!
(log x)`+κ

(
1 +O

( 1

log x

))
,

where

(6.8) S =
∏
p-∆

(
1− 1

p

)κ
(1 + g(p))

∏
p|∆

(
1− 1

p

)κ
,

and the implied constant depends only on κ, `, ∆ and on the one in
(6.6).
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Proof. This is Corollary A.6 of [4].

Since h1(p) = k(p− k − 1)−1 for p - ∆, we get from Lemma 6.2 that

(6.9) Y = S(∆)
`!

(k + `)!
(log
√
D)k+`

(
1 +O

( 1

logD

))
,

where

(6.10) S(∆) =
∏
p-∆

(
1− 1

p

)k(
1− k

p− 1

)−1∏
p|∆

(
1− 1

p

)k
.

Analogously, (6.1) and (6.4) indicate that

Y 2G1 =
∑
c<
√
D

(c,∆)=1

[
h1(c)

(
log

√
D

c

)2`

= S(∆)
(2`)!

(k + 2`)!
(log
√
D)k+2`

(
1 +O

( 1

logD

))
.

Applying (6.9) we obtain

(6.11) G1 = S(∆)−1 (2`)!(k + `)!2

(k + 2`)!`!2
(log
√
D)−k

(
1 +O

( 1

logD

))
.

Next we calculate G2. We have

(6.12) G2 =
∑
c<
√
D

(c,∆)=1

1

h2(c)

( ∑
m≡0 (mod c)

ρmg2(m)

)2

Notice that ρm is given in (6.2), whence∑
m≡0 (mod c)

ρmg2(m) =
∑

m≡0 (mod c)

µ(m)g2(m)

g1(m)

∑
d≡0 (mod m)

h1(d)yd

=
µ(c)g2(c)

g1(c)

∑
d≡0 (mod c)

h1(d)yd
∑
u| d

c

µ(u)g2(u)

g1(u)
.

Since∑
u| d

c

µ(u)g2(u)

g1(u)
=
∏
p| d

c

(
1−(k − 1)(p− 1)

k(p− 2)

)
=
∏
p| d

c

p− k − 1

k(p− 2)
=

1

h1(d/c)f(d/c)
,
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we conclude that∑
m≡0 (mod c)

ρmg2(m) = µ(c)
ϕ(c)

τk(c)

τk−1(c)

f(c)

∑
d≡0 (mod c)

h1(d)yd
h1(d/c)f(d/c)

= µ(c)ϕ(c)h1(c)
τk−1(c)

τk(c)

∑
d≡0 (mod c)

yd
f(d)

.

Inserting this into (6.12), we have

G2 =
∑
c<
√
D

(c,∆)=1

[ 1

h2(c)

(
ϕ(c)h1(c)

τk−1(c)

τk(c)

∑
d≡0 (mod c)

yd
f(d)

)2

=
∑
c<
√
D

(c,∆)=1

[
h2(c)ϕ(c)2

( ∑
d≡0 (mod c)

yd
f(d)

)2

=
1

Y 2

∑
c<
√
D

(c,∆)=1

[
h2(c)

ϕ(c)2

f(c)2

[ ∑
d<
√
D/c

(d,∆c)=1

[ 1

f(d)

(
log

√
D

cd

)`]2

.

Applying Lemma 6.2 we have

Y 2G2 =
S1(∆)2

(`+ 1)2

∑
c<
√
D

(c,∆)=1

[
h2(c)

(
log

√
D

c

)2`+2(
1 +O

( 1

log
√
D/c

))
,

where

S1(∆) =
∏
p-∆

(
1− 1

p

)(
1 +

1

p− 2

)∏
p|∆

(
1− 1

p

)
Applying Lemma 6.2 again we get

Y 2G2 =
S1(∆)2

(`+ 1)2
·S2(∆)

(2`+ 2)!

(k + 2`+ 1)!
(log
√
D)k+2`+1

(
1 +O

( 1

logD

))
,

where

S2(∆) =
∏
p-∆

(
1− 1

p

)k−1(
1 +

k − 1

p− k − 1

)∏
p|∆

(
1− 1

p

)k−1

.
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Combining with (6.9), we get
(6.13)

G2 =
S1(∆)2S2(∆)

S(∆)2

(k + `)!2(2`+ 2)!

(`+ 1)!2(k + 2`+ 1)!
(log
√
D)1−k

(
1+O

( 1

logD

))
.

If we write

(6.14) S′(∆) =
∏
p-∆

(
1− 1

p

)(
1 +

1

p+ 2

)
,

then a modicum of calculation shows that

S1(∆)2S2(∆)

S(∆)
=
ϕ(∆)

∆
S′(∆).

Therefore, comparing (6.13) with (6.11) we finally get

(6.15)
∆

ϕ(∆)
G2 =

(2`+ 1)S′(∆)G1 logD

(`+ 1)(k + 2`+ 1)

(
1 +O

( 1

logD

))
.

The last task is to evaluate G3, we will complete it in the next section.

7. Asymptotics of G3 and Proof of the Theorem

First we will give a more precise form of the error term in Lemma 6.2.

Lemma 7.1. Under the assumption of Lemma 6.2, we have
(7.1)∑
m6x

(m,∆)=1

[
g(m)

(
log

x

m

)`
= S

`!

(`+ κ)!
(log x)`+κ+O

(
(log x)κ+`−1 log log(∆+2)

)
,

where S is given in (6.8) and the implied constant depends only on κ, `
and on the one in (6.6).

Proof. First we introduce the following asymptotic formula

(7.2)
∑
m6x

(m,∆)=1

[
g(m) =

S

κ!
(log x)κ +O

(
(log x)κ−1 log log(∆ + 2)

)
,

the proof is analogous to the one given for Theorem A.5 in [4], the only
difference is that the condition (A.15) appeared in [4] should be replaced
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by ∑
p6x
p-∆

g(p) log p = κ log x+O(log log(∆ + 2))

since

(7.3)

∑
p|∆

log p

p
=

∑
p|∆

p6log(∆+2)

log p

p
+

∑
p|∆

p>log(∆+2)

log p

p

� log log(∆ + 2) +
log log(∆ + 2)

log(∆ + 2)

∑
p|∆

1

� log log(∆ + 2).

Then, using partial summation we can get (7.1) from (7.2).

Lemma 7.2. Under the assumption of Lemma 6.2, we have∑
m6x

(m,∆)=1

m|∆′

[
g(m)

(
log

x

m

)κ+`

=

(
1 +O

(
(log log(∆∆′ + 2))κ+1

S log x

))
(log x)κ+`

∏
p-∆
p|∆′

(1 + g(p)),

where S is given in (6.8), and the implied constant depends only on κ,
` and on the one in (6.6).

Proof. We have∑
m6x

(m,∆)=1

[
g(m)

(
log

x

m

)`
=

∑[∑[

m1m26x
(m1m2,∆)=1

m1|∆′, (m2,∆′)=1

g(m1m2)
(

log
x

m1m2

)`

=
∑
m16x

(m1,∆)=1

m1|∆′

[
g(m1)

∑
m26x/m1

(m2,∆∆′)=1

[
g(m2)

(
log

x

m1m2

)`
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=
∑
m16x

(m1,∆)=1

m1|∆′

[
g(m1)

[
S′`!

(κ+ `)!

(
log

x

m1

)κ+`

(7.4)

+O

((
log

x

m1

)κ+`−1

log log(∆∆′ + 2)

)]
where

S′ =
∏
p-∆∆′

(
1− 1

p

)κ
(1 + g(p))

∏
p|∆∆′

(
1− 1

p

)κ
.

It is obvious that∑
m1|∆′

g(m1) 6 exp

(∑
p|∆′

g(p)

)
� exp

(
κ
∑
p|∆′

1

p

)
�
(

log log(∆′ + 2)
)κ
,

where the last step is analogous to (7.3). Therefore, the error term in
(7.4) is

O
(
(log x)κ+`−1(log log(∆∆′ + 2))κ+1

)
.

Now, using Lemma 7.1 to calculate the left hand side of (7.4), we have∑
m6x

(m,∆)=1

m|∆′

[
g(m)

(
log

x

m

)κ+`

=
S

S′
(log x)κ+`

(
1+O

(
(log log(∆∆′ + 2))κ+1

S log x

))
,

where S is given in (6.8). Since

S

S′
=
∏
p-∆
p|∆′

(1 + g(p)),

the desired result is obtained.

Now we begin to calculate G3. As in section 6, we have

(7.5) G3 =
∑
c<
√
D

(c,∆)=1

[ 1

h3(c)

( ∑
m≡0 (mod c)

ρmg3(m)

)2

.
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From (6.2) we know that

∑
m≡0 (mod c)

ρmg3(m) =
∑

m≡0 (mod c)

g3(m)µ(m)
ϕ(m)

τk(m)

∑
d≡0 (mod m)

h1(d)yd

=
µ(c)ϕ(c)g3(c)

τk(c)

∑
d≡0 (mod c)

h1(d)yd
∑
u| d

c

µ(u)ϕ(u)g3(u)

τk(u)

=
µ(c)ϕ(c)g3(c)

τk(c)

∑
d≡0 (mod c)

h1(d)yd
∏
p| d

c

(
1− (p− 1)τ

(m)
k (p)

k(p− 2)

)

=
µ(c)ϕ(c)g3(c)

τk(c)

∑
d≡0 (mod c)

h1(d)yd
f1(b/c)

τk(b/c)f(b/c)
,

where f1 is the multiplicative function with

f1(p) = k(p− 2)− (p− 1)τ
(m)
k (p).

Therefore,

(7.6)
∑

m≡0 (mod c)

ρmg3(m) =
µ(c)ϕ(c)g3(c)h1(c)

τk(c)

∑
d

h1(d)f1(d)

τk(d)f(d)
ydc.

Recalling the definition of ydc, we can express the summation over d as

1

Y

∑
d<
√
D/c

(d,∆c)=1

[ h1(d)f1(d)

τk(d)f(d)

(
log

√
D

dc

)`
.

Since

h1(p)f1(p)

τk(p)f(p)
=


1

f(p)
if p | Q(am),

µ(p)h1(p)

f(p)
if p - Q(am),
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we have (note that ∆ | Q(am))
(7.7)∑

d

h1(d)f1(d)

τk(d)f(d)
ydc =

1

Y

∑[∑[

uv<
√
D/c

(uv,∆c)=1

u|Q(am), (v,Q(am))=1

1

f(u)
· µ(v)h1(v)

f(v)

(
log

√
D

uvc

)`

=
1

Y

∑
u<
√
D/c

(u,∆c)=1

u|Q(am)

[ 1

f(u)

∑
v<
√
D/(uc)

(v,Q(am)c)=1

[ µ(v)h1(v)

f(v)

(
log

√
D

uvc

)`

It is obvious that µ(v)h1(v)/f(v)� vε−2, therefore writing

(
log

√
D

uvc

)`
=
∑̀
j=0

(
`

j

)(
log

√
D

uc

)`−j
logj v,

we get

∑
v

=
(

log

√
D

uc

)` ∑
v<
√
D/(uc)

(v,Q(am)c)=1

[ µ(v)h1(v)

f(v)
+O

((
log

√
D

uc

)`−1
)

=
(

log

√
D

uc

)` ∏
p-Q(am)c

(
1− k

(p− k − 1)(p− 2)

)
+O

((
log

√
D

uc

)`−1
)
.

Inserting this into (7.7) and making use of Lemma 7.2 we have

∑
d

h1(d)f1(d)

τk(d)f(d)
ydc =

1

Y

(
log

√
D

c

)`(
1 +O

(
ϕ(c)

f(c)

(
log

√
D

c

)−1

(log logN)2

))
×

∏
p-Q(am)c

(
1− k

(p− k − 1)(p− 2)

) ∏
p-∆c

p|Q(am)

(
1 +

1

p− 2

)
,
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combining with (7.5) and (7.6) we have

Y 2G3

=
∑
c<
√
D

(c,∆)=1

[ 1

h3(c)

ϕ(c)2g3(c)2h1(c)2

τk(c)2

(
log

√
D

c

)2`
(

1 +O

(
ϕ(c)2(log logN)4

f(c)2 log(
√
D/c)

))

×
∏

p-Q(am)c

(
1− k

(p− k − 1)(p− 2)

)2 ∏
p-∆c

p|Q(am)

(
1 +

1

p− 2

)2

=
∑
c<
√
D

(c,∆)=1

[ S
(m)
1

h3(c)

ϕ(c)2g3(c)2h1(c)2

τk(c)2

(
log

√
D

c

)2`
(

1 +O

(
ϕ(c)2(log logN)4

f(c)2 log(
√
D/c)

))

×
∏

p-Q(am)

p|c

(
1− k

(p− k − 1)(p− 2)

)−2 ∏
p|(c,Q(am))

(
1 +

1

p− 2

)−2

=
∑[∑[

uv<
√
D

(uv,∆)=1

u|Q(am), (v,Q(am))=1

S
(m)
1

h3(uv)

ϕ(uv)2g3(uv)2h1(uv)2

τk(uv)2

(
log

√
D

uv

)2`∏
p|u

(
1 +

1

p− 2

)−2

×
∏
p|v

(
1− k

(p− k − 1)(p− 2)

)−2(
1 +O

(
ϕ(uv)2(log logN)4

f(uv)2 log(
√
D/uv)

))
,

where

(7.8) S
(m)
1 =

∏
p-Q(am)

(
1− k

(p− k − 1)(p− 2)

)2 ∏
p-∆

p|Q(am)

(
1 +

1

p− 2

)2

.

It is easy to verify that

1

h3(p)

ϕ(p)2g3(p)2h1(p)2

τk(p)2

(
1 +

1

p− 2

)−2

= h3(p)

for p | Q(am) and also

1

h3(p)

ϕ(p)2g3(p)2h1(p)2

τk(p)2

(
1− k

(p− k − 1)(p− 2)

)−2

= h3(p)
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for p - Q(am). Thus

Y 2G3 = S
(m)
1

∑
u<
√
D

(u,∆)=1

u|Q(am)

[
h3(u)

∑
v<
√
D/u

(v,Q(am))=1

[
h3(v)

(
log

√
D

uv

)2`

×
(

1 +O

(
ϕ(uv)2(log logN)4

f(uv)2 log(
√
D/uv)

))
.

Making use of Lemma 7.1 we obtain

Y 2G3 = S
(m)
1

∑
u<
√
D

(u,∆)=1

u|Q(am)

[
h3(u)

[
S

(m)
2

(2`)!

(k + 2`)!

(
log

√
D

u

)k+2`

+O

(
ϕ(u)2

f(u)2

(
log

√
D

u

)k+2`−1

(log logN)4

)]
,

where

(7.9) S
(m)
2 =

∏
p-Q(am)

(
1− 1

p

)k(
1 +

k

p− k − 2

) ∏
p|Q(am)

(
1− 1

p

)k
.

Therefore, Lemma 7.2 implies
(7.10)

Y 2G3 =
(2`)!S

(m)
1 S

(m)
2

(k + 2`)!

∏
p-∆

p|Q(am)

(
1 +

k − 1

p− k − 1

)
· (log

√
D)k+2`

×
(

1 +O

(
(log logN)k

logD

))
+O

(
S

(m)
1

∏
p-∆

p|Q(am)

(
1 +

k − 1

p− k − 1

(p− 1)2

(p− 2)2

)
· (log

√
D)k+2`−1

)
.
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The error term can be disposed in the following way:

S
(m)
1

∏
p-∆

p|Q(am)

(
1 +

k − 1

p− k − 1

(p− 1)2

(p− 2)2

)

�
∏
p-∆

p|Q(am)

(p− 1

p− 2

)2
(

1 +
k − 1

p− k − 1

(p− 1)2

(p− 2)2

)
,

the product over primes p 6 logN is O
(
(log logN)k+1

)
, while for p >

logN we have(p− 1

p− 2

)2
(

1 +
k − 1

p− k − 1

(p− 1)2

(p− 2)2

)
6 1 +

2k

logN
,

therefore the corresponding product is

6
(

1 +
2k

logN

)ω(Q(am))

�
(

1 +
2k

logN

) k logN
log logN

= 1 +O
( 1

log logN

)
,

since Q(am) 6 N
k
2 . Whence the last O-term in (7.10) is O

(
(logD)k+2`−1

(log logN)k+1
)
. Analogously, If we denote by

S(m) =
S

(m)
1 S

(m)
2

S(∆)

∏
p-∆

p|Q(am)

(
1 +

k − 1

p− k − 1

)
,

then it is easy to show that

(7.11) S(m) =
∏
p-∆

(
1− k

(p− k − 1)(p− 2)

) ∏
p-∆

p|Q(am)

(
1 +

1

p− k − 2

)
.

Therefore,

S
(m)
1 S

(m)
2

∏
p-∆

p|Q(am)

(
1 +

k − 1

p− k − 1

)
� log logN.

Hence the total error in (7.10) is O
(
(logD)k+2`−1(log logN)k+1

)
.
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Recalling the asymptotic formula of Y and G1 in (6.9) and (6.11)
respectively, we can deduce from (7.10) that

(7.12) G3 = S(m)G1 +O

(
G1(log logN)k+1

logD

)
.

Now we come to the proof of Theorem 1.1. Inserting (6.15) and (7.12)
into (5.9), we have

S3 − S4

> (1 +O(e−s))
Nγ(H)V (z)G1

2

[
k(2`+ 1)S′(∆) logD

(`+ 1)(k + 2`+ 1)

(
1 +O

( 1

logD

))
+

∆

ϕ(∆)

∑
am∈M\H

S(m) − logN +O
(
(log logN)k+1

)]
+O

(
N

(logN)A+1

)

> (1 +O(e−s))
Nγ(H)V (z)G1 logN

2

[
k(2`+ 1)S′(∆)

2(`+ 1)(k + 2`+ 1)
(1− 4ε)

+
1

2 log a

∏
p-∆

(
1− k

(p− k − 1)(p− 2)

)
− 1 +O

(
(log logN)k+1

logN

)]

+O

(
N

(logN)A+1

)
.

Combining with (2.5) and (4.5) we get
(7.13)
S(A,P , z)

> (1 +O(e−s))
Nγ(H)V (z)G1 logN

2

[
k(2`+ 1)S′(∆)

2(`+ 1)(k + 2`+ 1)
(1− 4ε)

+
1

2 log a

∏
p-∆

(
1− k

(p− k − 1)(p− 2)

)
− 1 +O

(
(log logN)k+1

logN

)]

+O

(
N

(logN)A+1

)
.
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Therefore, S(A,P , z) has a positive lower bound provided that
(7.14)
k(2`+ 1)S′(∆)

2(`+ 1)(k + 2`+ 1)
(1−4ε)+

1

2 log a

∏
p-∆

(
1− k

(p− k − 1)(p− 2)

)
−1 > 0,

we verify this in the following way.

Firstly, (6.14) implies that

S′(∆) =
∏
p-∆

(
1− 3

p(p+ 2)

)
>
∏

n>k+1

(
1− 3

n(n+ 2)

)
=

k

k + 3
.

Secondly, we have

∏
p-∆

(
1− k

(p− k − 1)(p− 2)

)
> γk,

where
(7.15)

γk =
∏
p>k+2

(
1− k

(p− k − 1)(p− 2)

)
=
∏
p>k+2

(
1+

k

(p− k − 2)(p− 1)

)−1

.

We can prove that there are infinitely many k such that γk has absolute
lower-bound by studying the mean value.

Lemma 7.3. It holds for any K > 1 that

1

K

∑
K<k62K

2|k

log
1

γk
� 1,

where the implied constant is absolute.

Proof. It is sufficient to prove that

1

K

∑
K<k62K

∑
k+2<p64K

k

(p− k − 2)(p− 1)
� 1.
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The left hand side is equal to

1

K

∑
K+2<p64K

1

p− 1

∑
K<k6min(2K,p−3)

k

p− k − 2

=
1

K

( ∑
K+2<p62K+3

1

p− 1

∑
K<k6p−3

k

p− k − 2

+
∑

2K+3<p64K

1

p− 1

∑
K<k62K

k

p− k − 2

)
=

1

K
(K1 +K2)

say, where

K1 �
∑

K+2<p62K+3

∑
K<k6p−3

1

p− k − 2
=

∑
K+2<p62K+3

∑
k<p−K−2

1

k

�
∑

K+2<p62K+3

log p� K.

On the other hand,

K2 �
∑

2K+3<p64K

∑
K<k62K

1

p− k − 2
=

∑
2K+3<p64K

(
log

p−K − 2

p− 2K − 2
+O(1)

)
= −

∑
2K+3<p64K

log

(
1− K

p−K − 2

)
+O(K)

�
∑

2K+3<p64K

K

p−K − 2
+K � K.

The desired result is obtained.

It follows from Lemma 7.3 that γk is bounded below by a positive ab-
solute constant for some even number k in any dyadic segment. Choosing
such a k, sufficiently large in terms of ε and a, and choosing ` = [

√
k/2],

we find that the left hand side of (7.14) is positive. This completes the
proof of Theorem 1.1.
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