GOLDBACH-LINNIK TYPE PROBLEMS WITH UNEQUAL POWERS OF PRIMES

Li Zhu

Abstract

It is proved that every sufficiently large even integer can be represented as a sum of two squares of primes, two cubes of primes, two fourth powers of primes and 17 powers of 2 .

1. Introduction

In the 1950s, Linnik [7, 8] proved that every sufficiently large even integer can be represented as a sum of two primes and K powers of 2 , where K is an absolute constant. In 1975, Gallagher [1] established an asymptotic formula for the number of such representations. Based on the work of Gallagher [1], Liu, Liu and Wang [10] first established the explicit value of K and showed that $K=54000$ is acceptable. Afterwards, the value of K was improved by many authors (see $[3,5,6,11,13,17]$). The best result so far is due to Pintz and Ruzsa [14], who proved that $K=8$ is acceptable.

In 2017, motivated by the works of Linnik [7, 8] and Gallagher [1], Liu [9] considered the problem on the representation of the large even integer N in the form

$$
\begin{equation*}
N=p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{4}+p_{6}^{4}+2^{v_{1}}+\cdots+2^{v_{k}} \tag{1.1}
\end{equation*}
$$

where p_{i} are prime numbers and v_{j} are positive integers. He proved that (1.1) is solvable for $k=41$. In 2019, by employing the techniques in Zhao [18], Lü [12] improved the value of k to 24 . Very recently, motivated by Platt and Trudgian [15], Zhao [19] refined Lü's result and showed that $k=22$ is acceptable.

In this paper, by improving the estimates for the singular series and the related integral over the minor arcs, we can obtain the following sharper result:

Theorem 1. Every sufficiently large even integer is a sum of two squares of primes, two cubes of primes, two fourth powers of primes and 17 powers of 2 .

[^0]
2. Notation and outline of the method

In this paper, we assume that N is a sufficiently large even integer. We fix a positive constant η satisfying $\eta \leq 10^{-100}$. Let ε be an arbitrarily small positive number where the value of ε may change from line to line. The letter p, with or without subscript, is reserved for a prime number. We use $e(\alpha)$ to denote $e^{2 \pi i \alpha}$. As usual, $\varphi(n)$ stands for Euler's function and $d(n)$ denotes the number of divisors of n.

We plan to investigate the sum

$$
\begin{equation*}
\mathcal{R}(k, N)=\sum_{\substack{N=p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{4}+p_{6}^{4}+2^{v_{1}}+\cdots+2^{v_{k}} \\ \frac{P_{2}}{2} \leq p_{1}, p_{2} \leq P_{2}, \frac{P_{3}}{2} \leq p_{3}, p_{4} \leq P_{3}, P_{4} \leq p_{5}, p_{6} \leq P_{4}, 1 \leq v_{1}, \ldots, v_{k} \leq L}}\left(\log p_{1}\right) \cdots\left(\log p_{6}\right), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{2}=\sqrt{(1-\eta) N}, P_{3}=\left(\frac{\eta N}{2}\right)^{\frac{1}{3}}, P_{4}=\left(\frac{\eta N}{2}\right)^{\frac{1}{4}} \tag{2.2}
\end{equation*}
$$

and

$$
L=\frac{\log (N / \log N)}{\log 2}
$$

The exponents of P_{j} are natural, since the summation (2.1) is solvable when $p_{1}, p_{2} \leq N^{\frac{1}{2}}, p_{3}, p_{4} \leq N^{\frac{1}{3}}$ and $p_{5}, p_{6} \leq N^{\frac{1}{4}}$. In order to apply the circle method, we set

$$
S_{i}(\alpha)=\sum_{\frac{P_{i}}{2} \leq p \leq P_{i}} e\left(p^{i} \alpha\right) \log p, \quad H(\alpha)=\sum_{1 \leq v \leq L} e\left(2^{v} \alpha\right) .
$$

As in [9], let

$$
\begin{equation*}
Q_{1}=N^{\frac{3}{20}-2 \varepsilon}, Q_{2}=N^{\frac{17}{20}+\varepsilon} \tag{2.3}
\end{equation*}
$$

Then we can define the major arcs \mathfrak{M} and the minor arcs \mathfrak{m} as

$$
\begin{align*}
\mathfrak{M} & =\bigcup_{q \leq Q_{1}} \bigcup_{\substack{a=1 \\
(a, q)=1}}^{q} \mathfrak{M}(q, a), \mathfrak{M}(q, a)=\left(\frac{a}{q}-\frac{1}{q Q_{2}}, \frac{a}{q}+\frac{1}{q Q_{2}}\right] \tag{2.4}\\
\mathfrak{m} & =\left[\frac{1}{Q_{2}}, 1+\frac{1}{Q_{2}}\right] \backslash \mathfrak{M} .
\end{align*}
$$

By orthogonality, we get

$$
\begin{align*}
\mathcal{R}(k, N) & =\int_{0}^{1} S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2} H(\alpha)^{k} e(-N \alpha) d \alpha \\
& =\left(\int_{\mathfrak{M}}+\int_{\mathfrak{m}}\right) S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2} H(\alpha)^{k} e(-N \alpha) d \alpha \\
& =I(k, \mathfrak{M}, N)+I(k, \mathfrak{m}, N), \tag{2.5}
\end{align*}
$$

where

$$
\begin{equation*}
I(k, \mathfrak{X}, N)=\int_{\mathfrak{X}} S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2} H(\alpha)^{k} e(-N \alpha) d \alpha \tag{2.6}
\end{equation*}
$$

In the following sections, we shall prove

$$
\begin{align*}
& I(k, \mathfrak{M}, N) \geq 0.0295049 P_{3}^{2} P_{4}^{2} L^{k} \tag{2.7}\\
& |I(k, \mathfrak{m}, N)| \leq 0.58814 u^{k} P_{3}^{2} P_{4}^{2} L^{k}+O\left(P_{3}^{2} P_{4}^{2} L^{k-1}\right) \tag{2.8}
\end{align*}
$$

where $u=0.833783$.

3. The lower bound for $I(k, \mathfrak{M}, N)$

The purpose of this section is to obtain the lower bound for $I(k, \mathfrak{M}, N)$. We first state some auxiliary results. Let

$$
\begin{aligned}
& C_{j}(q, a)=\sum_{\substack{m=1 \\
(m, q)=1}}^{q} e\left(\frac{a m^{j}}{q}\right), \\
& B(n, q)=\sum_{\substack{a=1 \\
(a, q)=1}}^{q} C_{2}^{2}(q, a) C_{3}^{2}(q, a) C_{4}^{2}(q, a) e\left(-\frac{a n}{q}\right), \\
& A(n, q)=\frac{B(n, q)}{\varphi^{6}(q)}, \quad \mathfrak{S}(n)=\sum_{q=1}^{\infty} A(n, q), \\
& \mathfrak{J}(n)=\sum_{\substack{m_{1}+\ldots+m_{6}=n \\
\left(\frac{P_{2}}{2}\right)^{2} \leq m_{1}, m_{2} \leq P_{2},\left(\frac{P_{3}}{2}\right)^{3} \leq m_{3}, m_{4} \leq P_{3}^{3},}}\left(m_{1} m_{2}\right)^{-\frac{1}{2}}\left(m_{3} m_{4}\right)^{-\frac{2}{3}}\left(m_{5} m_{6}\right)^{-\frac{3}{4}} . \\
& \left(\frac{P_{4}}{2}\right)^{4} \leq m_{5}, m_{6} \leq P_{4}^{4}
\end{aligned}
$$

Lemma 3.1. Let \mathfrak{M} be defined as (2.4) with Q_{1}, Q_{2} determined by (2.3). Then for $(1-\eta) N \leq n \leq N$, we have

$$
\begin{align*}
& \int_{\mathfrak{M}} S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2} e(-n \alpha) d \alpha \\
= & \frac{1}{2^{2} \cdot 3^{2} \cdot 4^{2}} \mathfrak{S}(n) \mathfrak{J}(n)+O\left(N^{\frac{7}{6}} L^{-1}\right) . \tag{3.1}
\end{align*}
$$

Here $\mathfrak{S}(n) \gg 1$ for $n \equiv 0(\bmod 2)$ and $N^{\frac{7}{6}} \ll \mathfrak{J}(n) \ll N^{\frac{7}{6}}$.
Proof. Note that Q_{1}, Q_{2} are selected as the same values as in [9]. Therefore, the desired conclusion follows from [9, Lemma 2.1].

Lemma 3.2. When $(a, p)=1$, we have
(i) $\left|C_{j}(p, a)\right| \leq(j-1) p^{\frac{1}{2}}+1$,
(ii) $C_{3}(p, a)=-1$ if $p \equiv 2(\bmod 3)$.

Proof. For (i), see [16, Lemma 4.3]. For (ii), note that $p \equiv 2(\bmod 3)$ and $(a, p)=1$. Then it follows from [16, Lemma 4.3] that

$$
\sum_{x=1}^{p} e\left(\frac{a x^{3}}{p}\right)=0
$$

Hence

$$
C_{3}(p, a)=\sum_{x=1}^{p-1} e\left(\frac{a x^{3}}{p}\right)=-1 .
$$

Lemma 3.3. We have

$$
\prod_{p \geq 11}(1+A(n, p)) \geq 0.902346
$$

Proof. For $11 \leq p \leq 199$, we can directly calculate $\min _{1 \leq n \leq p}(1+A(n, p))$ on PC and obtain that
$1+A(n, 11) \geq 0.999503,1+A(n, 13) \geq 0.925347, \ldots, 1+A(n, 199) \geq 0.999997$.
Thus

$$
\begin{equation*}
\prod_{11 \leq p \leq 199}(1+A(n, p)) \geq 0.916851 \tag{3.2}
\end{equation*}
$$

For $199<p \leq 10^{5}$, if $p \equiv 2(\bmod 3)$ and $(a, p)=1$, then we can deduce from Lemma 3.2(i) and (ii) that

$$
\begin{align*}
1+A(n, p) & \geq 1-\frac{\sum_{a=1}^{p-1}\left|C_{2}^{2}(p, a) C_{4}^{2}(p, a)\right|}{(p-1)^{6}} \\
& \geq 1-\frac{(\sqrt{p}+1)^{2}(3 \sqrt{p}+1)^{2}}{(p-1)^{5}} . \tag{3.3}
\end{align*}
$$

If $p \equiv 1(\bmod 3)$, then it follows from Lemma 3.2(i) that

$$
\begin{equation*}
1+A(n, p) \geq 1-\frac{(\sqrt{p}+1)^{2}(2 \sqrt{p}+1)^{2}(3 \sqrt{p}+1)^{2}}{(p-1)^{5}} \tag{3.4}
\end{equation*}
$$

Combining (3.3)-(3.4), we can deduce from numerical calculation that

$$
\begin{aligned}
& \prod_{199<p \leq 10^{5}}(1+A(n, p)) \geq \prod_{\substack{199<p \leq 10^{5} \\
p \equiv 1(\bmod 3)}}\left(1-\frac{(\sqrt{p}+1)^{2}(2 \sqrt{p}+1)^{2}(3 \sqrt{p}+1)^{2}}{(p-1)^{5}}\right) \\
& \times \prod_{\substack{199<p \leq 10^{5} \\
p \equiv 2(\bmod 3)}}\left(1-\frac{(\sqrt{p}+1)^{2}(3 \sqrt{p}+1)^{2}}{(p-1)^{5}}\right) \\
& \geq 0.98425 \times 0.999989 \geq 0.984239 \text {. }
\end{aligned}
$$

For $p>10^{5}$, it follows from [9, Section 3, p. 443] that

$$
\begin{equation*}
\prod_{p>10^{5}}(1+A(n, p)) \geq \prod_{p>10^{5}}\left(1-\frac{1}{(p-1)^{2}}\right)^{37} \geq 0.99994 \tag{3.6}
\end{equation*}
$$

Now, we can conclude from (3.2) and (3.5)-(3.6) that

$$
\begin{equation*}
\prod_{p \geq 11}(1+A(n, p)) \geq 0.916851 \times 0.984239 \times 0.99994 \geq 0.902346 \tag{3.7}
\end{equation*}
$$

Lemma 3.4. Let $\Xi(N, k)=\left\{(1-\eta) N \leq n \leq N: n=N-2^{v_{1}}-\cdots-2^{v_{k}}\right.$, $\left.1 \leq v_{1}, \ldots, v_{k} \leq L\right\}$. Then for $k \geq 17$ and $N \equiv 0(\bmod 2)$, we have

$$
\begin{equation*}
\sum_{\substack{n \in \Xi(N, k) \\ n \equiv 0(\bmod 2)}} \mathfrak{S}(n) \geq 1.80321 L^{k} \tag{3.8}
\end{equation*}
$$

Proof. Since $A(n, q)$ is multiplicative and $A\left(n, p^{j}\right)=0$ for $j \geq 2($ see $[9,(3.3)])$, we have

$$
\begin{equation*}
\mathfrak{S}(n)=\prod_{p \geq 2}(1+A(n, p)) \tag{3.9}
\end{equation*}
$$

Set $C=0.902346$. Then by applying Lemma 3.3, we can get

$$
\begin{align*}
\mathfrak{S}(n) & =\prod_{2 \leq p \leq 7}(1+A(n, p)) \prod_{11 \leq p}(1+A(n, p)) \\
& \geq C \prod_{2 \leq p \leq 7}(1+A(n, p)) . \tag{3.10}
\end{align*}
$$

Note that $1+A(n, 2)=2$ for $n \equiv 0(\bmod 2)$. Then for $q=\prod_{3 \leq p \leq 7} p=105$, we obtain

$$
\begin{align*}
\sum_{\substack{n \in \Xi(N, k) \\
n \equiv 0(\bmod 2)}} \mathfrak{S}(n) & \geq 2 C \sum_{\substack{n \in \Xi(N, k) \\
n \equiv 0(\bmod 2)}} \prod_{\substack{3 \leq p \leq 7}}(1+A(n, p)) \\
& =2 C \sum_{1 \leq j \leq q} \sum_{\substack{n \in \Xi(N, k) \\
n \equiv 0(\bmod 2) \\
n \equiv j \bmod q)}} \prod_{3 \leq p \leq 7}(1+A(n, p)) \\
& =2 C \sum_{1 \leq j \leq q} \prod_{3 \leq p \leq 7}(1+A(j, p)) \sum_{\substack{n \in \Xi(N, k) \\
n=1 \\
n \equiv j(\bmod 2) \\
n \equiv j \bmod q)}} 1 . \tag{3.11}
\end{align*}
$$

Let S denote the innermost sum in (3.11). Noting that $N \equiv 0(\bmod 2)$, we have

$$
\begin{equation*}
=\sum_{\substack{1 \leq v_{1}, \ldots, v_{k} \leq L \\ 2^{v_{1}}+\cdots+2^{v_{k}} \equiv N-j(\bmod q)}} 1 . \tag{3.12}
\end{equation*}
$$

Let $\rho(q)$ denote the smallest positive integer ρ such that $2^{\rho} \equiv 1(\bmod q)$. Thus

$$
\begin{aligned}
S & =\left(\frac{L}{\rho(q)}+O(1)\right)^{k} \sum_{\substack{1 \leq v_{1}, \ldots, v_{k} \leq \rho(q) \\
2^{v_{1}}+\cdots+2^{v} k \equiv N-j(\bmod q)}} 1 \\
& =\left(\frac{L}{\rho(q)}+O(1)\right)^{k} \frac{1}{q} \sum_{r=1}^{q} e\left(\frac{r(j-N)}{q}\right)\left(\sum_{1 \leq v \leq \rho(q)} e\left(\frac{r 2^{v}}{q}\right)\right)^{k} .
\end{aligned}
$$

Since $q=105$, we can get $\rho(q)=12$. Write $f(r)=\left|\sum_{1 \leq v \leq \rho(q)} e\left(\frac{r 2^{v}}{q}\right)\right|$. With the help of a computer, it is easy to check that

$$
\begin{equation*}
\max _{1 \leq r<q-1} f(r)=f(7)=6 \quad \text { and } \quad f(q)=\rho(q)=12 \tag{3.14}
\end{equation*}
$$

Therefore, we can get

$$
\begin{align*}
S & \geq\left(\frac{L}{\rho(q)}+O(1)\right)^{k} \frac{1}{q}\left(\rho^{k}(q)-(q-1)\left(\max _{1 \leq r<q-1} f(r)\right)^{k}\right) \\
& \geq \frac{L^{k}}{q}\left(1-(q-1)\left(\frac{\max _{1 \leq r<q-1} f(r)}{\rho(q)}\right)^{k}\right)+O\left(L^{k-1}\right) \\
& \geq \frac{L^{k}}{105}\left(1-104 \times\left(\frac{1}{2}\right)^{17}\right)+O\left(L^{k-1}\right) \geq 0.009516 L^{k} \tag{3.15}
\end{align*}
$$

where the bound $k \geq 17$ is used. Combining (3.11) and (3.15), we obtain

$$
\begin{equation*}
\sum_{\substack{n \in \Xi(N, k) \\ n \equiv 0(\bmod 2)}} \mathfrak{S}(n) \geq 2 C \times 0.009516 L^{k} \sum_{1 \leq j \leq q} \prod_{3 \leq p \leq 7}(1+A(j, p)) \tag{3.16}
\end{equation*}
$$

On considering the facts $q=3 \times 5 \times 7$ and $A(j, p)=A\left(j_{1}, p\right)$ for $j \equiv j_{1}(\bmod p)$, we have

$$
\begin{aligned}
& \sum_{1 \leq j \leq q} \prod_{3 \leq p \leq 7}(1+A(j, p)) \\
= & \sum_{1 \leq j \leq q}(1+A(j, 3))(1+A(j, 5))(1+A(j, 7)) \\
= & \sum_{1 \leq j_{1} \leq 3} \sum_{1 \leq j_{2} \leq 5} \sum_{1 \leq j_{3} \leq 7}\left(1+A\left(j_{1}, 3\right)\right)\left(1+A\left(j_{2}, 5\right)\right)\left(1+A\left(j_{3}, 7\right)\right)
\end{aligned}
$$

$$
\begin{equation*}
=\prod_{3 \leq p \leq 7}\left(\sum_{1 \leq j \leq p}(1+A(j, p))\right) . \tag{3.17}
\end{equation*}
$$

Moreover, from the definition of $A(j, p)$, we have

$$
\begin{align*}
& \sum_{1 \leq j \leq p}(1+A(j, p)) \\
= & p+\sum_{1 \leq j \leq p} \frac{1}{(p-1)^{6}} \sum_{1 \leq a \leq p-1} C_{2}^{2}(p, a) C_{3}^{2}(p, a) C_{4}^{2}(p, a) e\left(-\frac{a j}{p}\right) \\
= & p+\frac{1}{(p-1)^{6}} \sum_{1 \leq a \leq p-1} C_{2}^{2}(p, a) C_{3}^{2}(p, a) C_{4}^{2}(p, a) \sum_{1 \leq j \leq p} e\left(-\frac{a j}{p}\right) \\
= & p, \tag{3.18}
\end{align*}
$$

where the bound $\sum_{1 \leq j \leq p} e\left(-\frac{a j}{p}\right)=0$ is used in the last step. Now we can conclude from (3.16)-(3.18) that

$$
\begin{align*}
\sum_{\substack{n \in \Xi(N, k) \\
n \equiv 0(\bmod 2)}} \mathfrak{S}(n) & \geq 2 C \times 0.009516 L^{k} \prod_{3 \leq p \leq 7}\left(\sum_{1 \leq j \leq p}(1+A(j, p))\right) \\
& =2 C \times 0.009516 L^{k} \prod_{3 \leq p \leq 7} p \geq 1.80321 L^{k} . \tag{3.19}
\end{align*}
$$

We remark that the primary role of taking $q=\prod_{3<p \leq 7} p$ is to deduce (3.11) and (3.17). It is easy to verify that taking $q=\prod_{3 \leq p \leq 7} p$ is the optimal choice. Changing the number of primes contained in q will reduce the lower bound in (3.8).

Lemma 3.5. For $(1-\eta) N \leq n \leq N$, we have

$$
\begin{equation*}
\mathfrak{J}(n)>(3 \pi-180 \eta) P_{3}^{2} P_{4}^{2} \tag{3.20}
\end{equation*}
$$

Proof. This is [12, Lemma 3.1].
Proposition 3.1. We have

$$
\begin{equation*}
I(k, \mathfrak{M}, N) \geq 0.0295049 P_{3}^{2} P_{4}^{2} L^{k} \tag{3.21}
\end{equation*}
$$

Proof. Note that $N \equiv 0(\bmod 2)$ and $H(\alpha)^{k} e(-N \alpha)=\sum_{\substack{n \in \Xi(N, k) \\ n \equiv N(\bmod 2)}} e(-n \alpha)$.
Then we can deduce from Lemma 3.1 and Lemmas 3.4-3.5 that

$$
I(k, \mathfrak{M}, N)=\sum_{\substack{n \in \Xi(N, k) \\ n \equiv 0(\bmod 2)}} \int_{\mathfrak{M}} S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2} e(-n \alpha) d \alpha
$$

$$
\begin{aligned}
& =\sum_{\substack{n \in \Xi(N, k) \\
n \equiv 0(\bmod 2)}}\left(\frac{1}{2^{2} \cdot 3^{2} \cdot 4^{2}} \mathfrak{S}(n) \mathfrak{J}(n)+O\left(N^{\frac{7}{6}} L^{-1}\right)\right) \\
& \geq \frac{3 \pi-180 \eta}{2^{2} \cdot 3^{2} \cdot 4^{2}} P_{3}^{2} P_{4}^{2} \sum_{\substack{n \in \Xi(N, k) \\
n \equiv 0(\bmod 2)}} \mathfrak{S}(n)+O\left(N^{\frac{7}{6}} L^{-1} \sum_{\substack{n \in \Xi(N, k) \\
n \equiv 0(\bmod 2)}} 1\right) \\
& \geq 0.02950495 P_{3}^{2} P_{4}^{2} L^{k}+O\left(N^{\frac{7}{6}} L^{k-1}\right) \\
& \geq 0.0295049 P_{3}^{2} P_{4}^{2} L^{k},
\end{aligned}
$$

where the trivial bound $\sum_{\substack{n \in \Xi(N, k) \\ n \equiv 0(\bmod 2)}} 1 \ll L^{k}$ is used.

4. The upper bound for $|I(k, \mathfrak{m}, N)|$

In this section, we will give the upper bound for $|I(k, \mathfrak{m}, N)|$. For this purpose, we need to introduce a further division of the minor arcs \mathfrak{m}. Let

$$
\begin{equation*}
\mathcal{E}(u)=\{\alpha \in(0,1]:|H(\alpha)| \geq u L\} . \tag{4.1}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
I(k, \mathfrak{m}, N) & =\int_{\mathfrak{m}} S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2} H(\alpha)^{k} e(-N \alpha) d \alpha \\
& =\left(\int_{\mathfrak{m} \backslash \mathcal{E}(u)}+\int_{\mathfrak{m} \cap \mathcal{E}(u)}\right) S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2} H(\alpha)^{k} e(-N \alpha) d \alpha \\
& =I(k, \mathfrak{m} \backslash \mathcal{E}(u), N)+I(k, \mathfrak{m} \cap \mathcal{E}(u), N) .
\end{aligned}
$$

The first term in (4.2) will be evaluated by the following Lemma 4.1(i) while the second term will be evaluated by Lemma 4.1(ii) and Lemmas 4.5-4.6.

Lemma 4.1. We have
(i) $\int_{0}^{1}\left|S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2}\right| d \alpha \leq 0.58814 P_{3}^{2} P_{4}^{2}$,
(ii) $\int_{0}^{1}\left|S_{2}(\alpha)^{2} S_{4}(\alpha)^{4}\right| d \alpha \ll N L^{c}$,
where c is an absolute constant.
Proof. This is [12, Lemma 2.2].
Proposition 4.1. We have

$$
\begin{equation*}
|I(k, \mathfrak{m} \backslash \mathcal{E}(u), N)| \leq 0.58814 u^{k} P_{3}^{2} P_{4}^{2} L^{k} \tag{4.3}
\end{equation*}
$$

Proof. Note that $|H(\alpha)|<u L$ for $\alpha \in \mathfrak{m} \backslash \mathcal{E}(u)$. Then by Lemma 4.1(i), we have

$$
|I(k, \mathfrak{m} \backslash \mathcal{E}(u), N)| \leq(u L)^{k} \int_{\mathfrak{m} \backslash \mathcal{E}(u)}\left|S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2}\right| d \alpha
$$

$$
\begin{align*}
& \leq(u L)^{k} \int_{0}^{1}\left|S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2}\right| d \alpha \\
& \leq 0.58814 u^{k} P_{3}^{2} P_{4}^{2} L^{k} \tag{4.4}
\end{align*}
$$

Lemma 4.2. For $\alpha \in \mathfrak{m}$, we have

$$
\begin{equation*}
S_{2}(\alpha) \ll N^{\frac{7}{16}+\varepsilon} . \tag{4.5}
\end{equation*}
$$

Proof. This is [9, Lemma 2.4].
Lemma 4.3. Define the multiplicative function $w_{k}(q)$ by

$$
w_{k}\left(p^{k u+v}\right)= \begin{cases}k p^{-u-\frac{1}{2}}, & \text { when } u \geq 0 \text { and } v=1 \\ p^{-u-1}, & \text { when } u \geq 0 \text { and } 2 \leq v \leq k\end{cases}
$$

and let

$$
\mathcal{L}(\gamma)=\sum_{\substack{a=1 \\ q \leq P_{3}^{\frac{3}{4}}}} \sum_{\substack{a=1 \\(a, q)=1}}^{q} \int_{\left|\alpha-\frac{a}{q}\right| \leq N} \frac{w_{3}^{2}(q)\left|\sum_{\frac{P_{4}}{2} \leq p \leq P_{4}} e\left(p^{4}(\alpha+\gamma)\right) \log p\right|^{2}}{1+P_{3}^{3}\left|\alpha-\frac{a}{q}\right|} d \alpha
$$

Then we have uniformly for $\gamma \in \mathbb{R}$ that

$$
\mathcal{L}(\gamma) \ll N^{-\frac{1}{2}+\varepsilon} .
$$

Proof. Write $\alpha=\frac{a}{q}+\lambda$. Then we have

$$
\mathcal{L}(\gamma)
$$

$(4.6) \leq \sum_{q \leq P_{3}^{\frac{3}{4}}} \int_{|\lambda| \leq N} \frac{w_{3}^{2}(q) \sum_{1 \leq a \leq q}\left|\sum_{\frac{P_{4} \leq p \leq P_{4}}{2}} e\left(p^{4}\left(\frac{a}{q}\right)+p^{4}(\lambda+\gamma)\right) \log p\right|^{2}}{1+P_{3}^{3}|\lambda|} d \lambda$.
It is easy to see that

$$
\begin{aligned}
& \sum_{1 \leq a \leq q}\left|\sum_{\sum_{\frac{P_{4}}{2} \leq p \leq P_{4}}} e\left(p^{4}\left(\frac{a}{q}\right)+p^{4}(\lambda+\gamma)\right) \log p\right|^{2} \\
&= \sum_{\frac{P_{4}}{2} \leq p_{1}, p_{2} \leq P_{4}}\left(\log p_{1}\right)\left(\log p_{2}\right) e\left(\left(p_{1}^{4}-p_{2}^{4}\right)(\lambda+\gamma)\right) \sum_{1 \leq a \leq q} e\left(\frac{\left(p_{1}^{4}-p_{2}^{4}\right) a}{q}\right) \\
&(4.7) \leq(\log N)^{2} q \sum_{\substack{P_{4} \leq p_{1}, p_{2} \leq P_{4} \\
p_{1}^{4} p_{2}^{4}(\bmod q) \\
\left(p_{1} p_{2}, q\right)=1}} 1+(\log N)^{2} q \sum_{\substack{\left.P_{4} \leq p_{1}, p_{2} \leq P_{4} \\
p_{1}^{4}=p_{2}^{4}(\bmod) q\right) \\
p_{1}\left|q, p_{2}\right| q}} 1 .
\end{aligned}
$$

Note that $q \leq P_{3}^{\frac{3}{4}}$. Thus

$$
\begin{equation*}
(\log N)^{2} q \sum_{\substack{\frac{P_{4}}{2} \leq p_{1}, p_{2} \leq P_{4} \\ p_{1}^{4}=p_{2}^{4}(\bmod q) \\ p_{1}\left|q, p_{2}\right| q}} 1 \ll(\log N)^{2} q d(q)^{2} \ll P_{3}^{\frac{3}{4}+\varepsilon} . \tag{4.8}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
q \sum_{\substack{P_{4} \leq p_{1}, p_{2} \leq P_{4} \\ \text { op } \\ p_{1}^{4}=p_{2}^{2}(\bmod q) \\\left(p_{1} p_{2}, q\right)=1}} 1 \ll \frac{P_{4}^{2}}{q} \sum_{\substack{1 \leq n_{1}, n_{2}<q \\ n_{1}^{4}=n_{2}^{4}(\bmod q) \\\left(n_{1} n_{2}, q\right)=1}} 1 \ll P_{4}^{2} \sum_{\substack{1 \leq n<q \\ n^{4} \equiv 1 \leq 1(\bmod q)}} 1 . \tag{4.9}
\end{equation*}
$$

Write $q=q_{1}^{r_{1}} q_{2}^{r_{2}} \cdots q_{s}^{r_{s}}$ (prime factorization). Then by [2, Theorem 122] and [4, p. 45], we can get

$$
\begin{align*}
\sum_{\substack{1 \leq n<q \\
n^{4} \equiv 1(\bmod q)}} 1 & =\prod_{1 \leq i \leq s} \sum_{\substack{1 \leq n<q_{i}^{r_{i}} \\
n^{4} \equiv 1\left(\bmod q_{i}^{r_{i}}\right)}} 1 \\
& \ll \prod_{1 \leq i \leq s}\left(4, \phi\left(q_{i}^{r_{i}}\right)\right) \ll 4^{s} \ll d^{3}(q) . \tag{4.10}
\end{align*}
$$

Now we can deduce from (4.6)-(4.10) that

$$
\begin{aligned}
\mathcal{L}(\gamma) & \ll \sum_{q \leq P_{3}^{\frac{3}{4}}} w_{3}^{2}(q) \int_{|\lambda| \leq N} \frac{P_{4}^{2} d^{3}(q) \log ^{2} N}{1+|\lambda| P_{3}^{3}} d \lambda \\
& \ll P_{4}^{2+\varepsilon} \sum_{q \leq P_{3}^{\frac{3}{4}}} w_{3}^{2}(q) d^{3}(q)\left(\int_{|\lambda| \leq \frac{1}{P_{3}^{3}}} 1 d \lambda+\int_{\frac{1}{P_{3}^{3}} \leq|\lambda| \leq N} \frac{1}{|\lambda| P_{3}^{3}} d \lambda\right) \\
& \ll P_{4}^{2+\varepsilon} P_{3}^{-3}(\log N) \sum_{q \leq P_{3}^{\frac{3}{4}}} w_{3}^{2}(q) d^{3}(q) \ll N^{-\frac{1}{2}+\varepsilon},
\end{aligned}
$$

where we used [18, Lemma 2.1] in the last step.
Lemma 4.4. Let

$$
\mathcal{M}(q, a)=\left\{\alpha:|q \alpha-a| \leq P_{3}^{-\frac{9}{4}}\right\}
$$

and let \mathcal{M} be the union of the intervals $\mathcal{M}(q, a)$ for $1 \leq a \leq q \leq P_{3}^{\frac{3}{4}},(a, q)=1$. Suppose that $G(\alpha)$ and $h(\alpha)$ are integrable functions of period one. Then we have

$$
\begin{equation*}
\int_{\mathfrak{m}} S_{3}(\alpha) G(\alpha) h(\alpha) d \alpha \ll P_{3} \mathcal{J}_{0}^{\frac{1}{4}}\left(\int_{\mathfrak{m}}|G(\alpha)|^{2} d \alpha\right)^{\frac{1}{4}} \mathcal{J}^{\frac{1}{2}}+P_{3}^{\frac{7}{8}+\varepsilon} \mathcal{J} \tag{4.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{J}=\int_{\mathfrak{m}}|G(\alpha) h(\alpha)| d \alpha, \quad \mathcal{J}_{0}=\sup _{\beta \in[0,1)} \int_{\mathcal{M}} \frac{w_{3}^{2}(q)|h(\alpha+\beta)|^{2}}{\left(1+P_{3}^{3}\left|\alpha-\frac{a}{q}\right|\right)^{2}} d \alpha . \tag{4.13}
\end{equation*}
$$

Proof. It follows from [18, Lemma 3.1] with $k=3$.
Lemma 4.5. We have

$$
\begin{equation*}
\int_{\mathfrak{m}}\left|S_{2}(\alpha)^{2} S_{3}(\alpha)^{3} S_{4}(\alpha)^{2}\right| d \alpha \ll N^{\frac{35}{24}+\varepsilon} . \tag{4.14}
\end{equation*}
$$

Proof. Applying Lemma 4.4 with $G(\alpha)=S_{3}(-\alpha) S_{4}(-\alpha)\left|S_{2}(\alpha)^{2} S_{3}(\alpha)\right|$ and $h(\alpha)=S_{4}(\alpha)$, we have

$$
\int_{\mathfrak{m}}\left|S_{2}(\alpha)^{2} S_{3}(\alpha)^{3} S_{4}(\alpha)^{2}\right| d \alpha=\int_{\mathfrak{m}} S_{3}(\alpha) G(\alpha) h(\alpha) d \alpha
$$

$$
\begin{equation*}
\ll P_{3} \mathcal{J}_{0}^{\frac{1}{4}}\left(\int_{\mathfrak{m}}|G(\alpha)|^{2} d \alpha\right)^{\frac{1}{4}} \mathcal{J}^{\frac{1}{2}}+P_{3}^{\frac{7}{8}+\varepsilon} \mathcal{J}, \tag{4.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{J}_{0}=\sup _{\beta \in[0,1)} \int_{\mathcal{M}} \frac{w_{3}^{2}(q)\left|S_{4}(\alpha+\beta)\right|^{2}}{\left(1+P_{3}^{3}\left|\alpha-\frac{a}{q}\right|\right)^{2}} d \alpha \tag{4.16}
\end{equation*}
$$

with \mathcal{M} given in Lemma 4.4 and

$$
\begin{equation*}
\mathcal{J}=\int_{\mathfrak{m}}|G(\alpha) h(\alpha)| d \alpha=\int_{\mathfrak{m}}\left|S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2}\right| d \alpha \tag{4.17}
\end{equation*}
$$

For \mathcal{J}_{0}, by Lemma 4.3, we have

$$
\begin{align*}
\mathcal{J}_{0} & \ll \sup _{\beta \in[0,1)} \sum_{\substack{q \leq P_{3}^{\frac{3}{4}}}} \sum_{\substack{a=1 \\
(a, q)=1}}^{q} \int_{\left|\alpha-\frac{a}{q}\right| \leq \frac{1}{q P_{3}^{4}}} \frac{w_{3}^{2}(q)\left|\sum_{\frac{P_{4}}{2} \leq p \leq P_{4}} e\left(p^{4}(\alpha+\beta)\right) \log p\right|^{2}}{\left(1+P_{3}^{3}\left|\alpha-\frac{a}{q}\right|\right)^{2}} d \alpha \tag{4.18}\\
& \ll \sup _{\beta \in[0,1)} \mathcal{L}(\beta) \ll N^{-\frac{1}{2}+\varepsilon} .
\end{align*}
$$

Applying Cauchy's inequality, Hua's inequality and Lemma 4.2, we obtain

$$
\begin{align*}
\int_{\mathfrak{m}}|G(\alpha)|^{2} d \alpha & \ll \sup _{\alpha \in \mathfrak{m}}\left|S_{2}(\alpha)\right|^{3}\left(\int_{0}^{1}\left|S_{3}(\alpha)\right|^{8} d \alpha\right)^{\frac{1}{2}}\left(\int_{0}^{1}\left|S_{2}(\alpha)\right|^{2}\left|S_{4}(\alpha)\right|^{4} d \alpha\right)^{\frac{1}{2}} \\
& \ll N^{\frac{21}{16}+\frac{5}{6}+\frac{1}{2}+\varepsilon} \ll N^{\frac{127}{48}+\varepsilon}, \tag{4.19}
\end{align*}
$$

where Lemma 4.1(ii) is used. For \mathcal{J}, it follows from Lemma 4.1(i) that

$$
\begin{equation*}
\mathcal{J} \ll \int_{0}^{1}\left|S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2}\right| d \alpha \ll N^{\frac{7}{6}+\varepsilon} . \tag{4.20}
\end{equation*}
$$

Combining (4.15) and (4.18)-(4.20), we have

$$
\begin{align*}
\int_{\mathfrak{m}}\left|S_{2}(\alpha)^{2} S_{3}(\alpha)^{3} S_{4}(\alpha)^{2}\right| d \alpha & \ll N^{\frac{1}{3}-\frac{1}{8}+\frac{127}{192}+\frac{7}{12}+\varepsilon}+N^{\frac{7}{24}+\frac{7}{6}+\varepsilon} \\
& \ll N^{\frac{35}{24}+\varepsilon} \tag{4.21}
\end{align*}
$$

Lemma 4.6. Let $\mathcal{E}(u)$ be defined as (4.1). Write meas $(\mathcal{E}(u))$ for the measure of the set $\mathcal{E}(u)$. Then we have

$$
\begin{equation*}
\operatorname{meas}(\mathcal{E}(0.833783)) \leq N^{-\frac{2}{3}-10^{-10}} \tag{4.22}
\end{equation*}
$$

Proof. For any $\lambda>0$ and $\varepsilon>0$, we can deduce from [13, Section 7] that

$$
\begin{equation*}
\operatorname{meas}(\mathcal{E}(u)) \leq e^{\frac{(\psi(\lambda)-\lambda u+\varepsilon) \log N}{\log 2}} \tag{4.23}
\end{equation*}
$$

where $\psi(\lambda)$ is defined in [13, Theorem 2]. Following the procedure of [13, Sections 4-6] with $k=40, L=2^{30}, \lambda=1.1, \varepsilon=10^{-100}$, we obtain

$$
\begin{equation*}
\psi(1.1) \leq 0.4550627 \tag{4.24}
\end{equation*}
$$

Now combining (4.23)-(4.24), we have

$$
\operatorname{meas}(\mathcal{E}(0.833783)) \leq N^{\frac{\psi(1.1)-1.1 \times 0.833783+10^{-100}}{\log 2}} \leq N^{-0.666667}
$$

Proposition 4.2. Let $u=0.833783$. Then we have

$$
\begin{equation*}
|I(k, \mathfrak{m} \cap \mathcal{E}(u), N)| \ll N^{\frac{7}{6}-\varepsilon} \ll P_{3}^{2} P_{4}^{2} L^{k-1} . \tag{4.25}
\end{equation*}
$$

Proof. By Hölder's inequality, Hua's inequality and Lemmas 4.5-4.6, we have $|I(k, \mathfrak{m} \cap \mathcal{E}(u), N)| \ll L^{k}\left(\int_{0}^{1}\left|S_{2}(\alpha)^{2} S_{4}(\alpha)^{4}\right| d \alpha\right)^{\frac{1}{6}}\left(\int_{0}^{1}\left|S_{2}^{4}(\alpha)\right| d \alpha\right)^{\frac{1}{12}}$ $\times\left(\int_{\mathfrak{m}}\left|S_{2}(\alpha)^{2} S_{3}(\alpha)^{3} S_{4}(\alpha)^{2}\right| d \alpha\right)^{\frac{2}{3}}\left(\int_{\mathcal{E}(0.833783)} 1 d \alpha\right)^{\frac{1}{12}}$ $\ll N^{\frac{1}{6}+\frac{1}{12}+\frac{35}{36}-\frac{1}{18}-10^{-12}+\varepsilon} \ll N^{\frac{7}{6}-\varepsilon}$,

$$
\begin{equation*}
\ll N^{\frac{1}{6}+\frac{1}{12}+\frac{35}{36}-\frac{1}{18}-10^{-12}+\varepsilon} \ll N^{\frac{7}{6}-\varepsilon} \tag{4.26}
\end{equation*}
$$

where Lemma 4.1(ii) and the trivial bound $H(\alpha) \ll L$ are used.
Now combining (4.2) and Propositions 4.1-4.2 with $u=0.833783$, we have

$$
\begin{align*}
|I(k, \mathfrak{m}, N)| & \leq|I(k, \mathfrak{m} \backslash \mathcal{E}(u), N)|+|I(k, \mathfrak{m} \cap \mathcal{E}(u), N)| \\
& \leq 0.58814 u^{k} P_{3}^{2} P_{4}^{2} L^{k}+O\left(P_{3}^{2} P_{4}^{2} L^{k-1}\right) . \tag{4.27}
\end{align*}
$$

5. Proof of Theorem 1

On recalling notations defined in Section 2, we have

$$
\begin{align*}
\mathcal{R}(k, N) & =\int_{0}^{1} S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2} H(\alpha)^{k} e(-N \alpha) d \alpha \\
& =\left(\int_{\mathfrak{M}}+\int_{\mathfrak{m}}\right) S_{2}(\alpha)^{2} S_{3}(\alpha)^{2} S_{4}(\alpha)^{2} H(\alpha)^{k} e(-N \alpha) d \alpha \\
& \geq I(k, \mathfrak{M}, N)-|I(k, \mathfrak{m}, N)| \tag{5.1}
\end{align*}
$$

When $k \geq 17$ and $u=0.833783$, we can deduce from (4.27) and Proposition 3.1 that

$$
\begin{aligned}
\mathcal{R}(k, N) & \geq\left(0.0295049-0.58814 \times 0.833783^{17}\right) P_{3}^{2} P_{4}^{2} L^{k}+O\left(P_{3}^{2} P_{4}^{2} L^{k-1}\right) \\
& >0.002 P_{3}^{2} P_{4}^{2} L^{k}
\end{aligned}
$$

Now the proof of Theorem 1 is completed.
Acknowledgments. We thank the referees for their time and comments. The author would like to express the most sincere gratitude to Professor Yingchun Cai for his valuable advice and constant encouragement.

References

[1] P. X. Gallagher, Primes and powers of 2, Invent. Math. 29 (1975), no. 2, 125-142. https://doi.org/10.1007/BF01390190
[2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, sixth edition, Oxford University Press, Oxford, 2008.
[3] D. R. Heath-Brown and J.-C. Puchta, Integers represented as a sum of primes and powers of two, Asian J. Math. 6 (2002), no. 3, 535-565. https://doi.org/10.4310/ AJM. 2002.v6.n3.a7
[4] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, second edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990. https: //doi.org/10.1007/978-1-4757-2103-4
[5] H. Li, The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes, Acta Arith. 92 (2000), no. 3, 229-237. https://doi. org/10.4064/aa-92-3-229-237
[6] H. Li, The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes. II, Acta Arith. 96 (2001), no. 4, 369-379. https: //doi.org/10.4064/aa96-4-7
[7] Yu. V. Linnik, Prime numbers and powers of two, Trudy Nat. Inst. Steklov. Izdat. Akad. Nauk SSSR, Moscow. 38 (1951), 152-169.
[8] Yu. V. Linnik, Addition of prime numbers with powers of one and the same number, Mat. Sbornik N.S. 32(74) (1953), 3-60.
[9] Z. Liu, Goldbach-Linnik type problems with unequal powers of primes, J. Number Theory 176 (2017), 439-448. https://doi.org/10.1016/j.jnt.2016.12.009
[10] J. Liu, M. Liu, and T. Wang, The number of powers of 2 in a representation of large even integers. II, Sci. China Ser. A 41 (1998), no. 12, 1255-1271. https://doi.org/10. 1007/BF02882266
[11] Z. Liu and G. Lü, Density of two squares of primes and powers of 2, Int. J. Number Theory 7 (2011), no. 5, 1317-1329. https://doi.org/10.1142/S1793042111004605

12] X. Lü, On unequal powers of primes and powers of 2, Ramanujan J. 50 (2019), no. 1, 111-121. https://doi.org/10.1007/s11139-018-0128-2
[13] J. Pintz and I. Z. Ruzsa, On Linnik's approximation to Goldbach's problem. I, Acta Arith. 109 (2003), no. 2, 169-194. https://doi.org/10.4064/aa109-2-6
[14] J. Pintz and I. Z. Ruzsa, On Linnik's approximation to Goldbach's problem. II, Acta Math. Hungar. 161 (2020), no. 2, 569-582. https://doi.org/10.1007/s10474-020-01077-8
[15] D. J. Platt and T. S. Trudgian, Linnik's approximation to Goldbach's conjecture, and other problems, J. Number Theory 153 (2015), 54-62. https://doi.org/10.1016/j. jnt.2015.01.008
[16] R. C. Vaughan, The Hardy-Littlewood Method, second edition, Cambridge Tracts in Mathematics, 125, Cambridge University Press, Cambridge, 1997. https://doi.org/ 10.1017/CB09780511470929
[17] T. Wang, On Linnik's almost Goldbach theorem, Sci. China Ser. A 42 (1999), no. 11, 1155-1172. https://doi.org/10.1007/BF02875983
[18] L. Zhao, On the Waring-Goldbach problem for fourth and sixth powers, Proc. Lond. Math. Soc. (3) 108 (2014), no. 6, 1593-1622. https://doi.org/10.1112/plms/pdt072
[19] X. D. Zhao, Goldbach-Linnik type problems on cubes of primes, Ramanujan J. https: //doi.org/10.1007/s11139-020-00303-9

Li Zhu
School of Statistics and Mathematics
Shanghai Lixin University of Accounting and Finance
Shanghai 201209, P. R. China
Email address: shulunzl@163.com

[^0]: Received June 1, 2021; Revised August 30, 2021; Accepted December 6, 2021. 2020 Mathematics Subject Classification. Primary 11P05, 11P55.
 Key words and phrases. Waring-Goldbach problem, Hardy-Littlewood method. This work was supported by The National Natural Science Foundation of China (grant no. 11771333).

