• 제목/요약/키워드: primes

검색결과 112건 처리시간 0.027초

ON THE SEVERAL DIFFERENCES BETWEEN PRIMES

  • Park, Yeonyong;Lee, Heonsoo
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.37-51
    • /
    • 2003
  • Enumeration of the primes with difference 4 between consecutive primes, is counted up to 5${\times}$10$\^$10/, yielding the counting function ,r2,4(5${\times}$10$\^$10/) = l18905303. The sum of reciprocals of primes with gap 4 between consecutive primes is computed B$_4$(5 ${\times}$ 10$\^$10/) = 1.1970s4473029 and B$_4$ = 1.197054 ${\pm}$ 7 ${\times}$ 10$\^$-6/. And Enumeration of the primes with difference 6 between consecutive primes, is counted up to 5${\times}$10$\^$10/, yielding the counting function $\pi$$\_$2.6/(5${\times}$10$\^$10/) = 215868063. The sum of reciprocals of primes with gap 6 between consecutive primes is computed B$\_$6/(5${\times}$10$\^$10/) = 0.93087506039231 and B$\_$6/ = 1.135835 ${\pm}$ 1.2${\times}$10$\^$-6/.

ON THE PRIMES WITH $P_{n+1}-P_n = 8$ AND THE SUM OF THEIR RECIPROCALS

  • Lee Heon-Soo;Park Yeon-Yong
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.441-452
    • /
    • 2006
  • We introduce the counting function ${\pi}^*_{2.8}(x)$ of the primes with difference 8 between consecutive primes ($p_n,\;p_{n+l}=p_n+8$) can be approximated by logarithm integral $Li^*_{2.8}$. We calculate the values of ${\pi}^*_{2.8}(x)$ and the sum $C_{2,8}(x)$ of reciprocals of primes with difference 8 between consecutive primes $p_n,\;p_{n+l}=p_n+8$ where x is counted up to $7{\times}10^{10}$. From the results of these calculations. we obtain ${\pi}^*_{2.8}(7{\times}10^{10}$)= 133295081 and $C_{2.8}(7{\times}10^{10}) = 0.3374{\pm}2.6{\times}10^{-4}$.

연속하는 두 소수의 차가 10인 소수 쌍에 대한 근사 함수에 대한 연구 (A study on the approximation function for pairs of primes with difference 10 between consecutive primes)

  • 이헌수
    • 사물인터넷융복합논문지
    • /
    • 제6권4호
    • /
    • pp.49-57
    • /
    • 2020
  • 본 논문은 연속하는 두 소수의 차가 10인 소수의 쌍의 수에 대한 계산 함수 π*2,10(x)의 근사함수 Li*2,10(x)를 로그적분을 이용하여 유도하였다. Li*2,10(x)가 π*2,10(x)의 근사함수로 적절한지 알아보기 위하여 컴퓨터와 Mathematica 프로그램을 이용하여 π*2,10(x)와 Li*2,10(x)의 값을 x ≤ 1011까지 구한 후 두 값의 오차율을 계산하였다. 오차율을 계산한 결과 대부분의 구간에서 오차율이 0.005% 이하로 나타났다. 또한, 두 소수의 차가 10인 소수들의 역수들의 합 C2,10(∞)이 유한임을 보였다. C2,10(∞)의 수렴값을 구하기 위하여 C2,10(1011)을 구한 후, 이를 이용하여 C2,10(∞)의 대략적인 수렴값을 계산하였다. 그 결과 C2,10(∞)=0.4176±2.1×10-3로 수렴함을 알 수 있었다.

TORSION POINTS OF ELLIPTIC CURVES WITH BAD REDUCTION AT SOME PRIMES II

  • Yasuda, Masaya
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.83-96
    • /
    • 2013
  • Let K be a number field and fix a prime number $p$. For any set S of primes of K, we here say that an elliptic curve E over K has S-reduction if E has bad reduction only at the primes of S. There exists the set $B_{K,p}$ of primes of K satisfying that any elliptic curve over K with $B_{K,p}$-reduction has no $p$-torsion points under certain conditions. The first aim of this paper is to construct elliptic curves over K with $B_{K,p}$-reduction and a $p$-torsion point. The action of the absolute Galois group on the $p$-torsion subgroup of E gives its associated Galois representation $\bar{\rho}_{E,p}$ modulo $p$. We also study the irreducibility and surjectivity of $\bar{\rho}_{E,p}$ for semistable elliptic curves with $B_{K,p}$-reduction.

THE GENERALIZATION OF CLEMENT'S THEOREM ON PAIRS OF PRIMES

  • Lee, Heon-Soo;Park, Yeon-Yong
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.89-96
    • /
    • 2009
  • In this article, we show a generalization of Clement's theorem on the pair of primes. For any integers n and k, integers n and n + 2k are a pair of primes if and only if 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) whenever (n, (2k)!) = (n + 2k, (2k)!) = 1. Especially, n or n + 2k is a composite number, a pair (n, n + 2k), for which 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) is called a pair of pseudoprimes for any positive integer k. We have pairs of pseudorimes (n, n + 2k) with $n{\leq}5{\times}10^4$ for each positive integer $k(4{\leq}k{\leq}10)$.

  • PDF

SOME REMARKS ON COAASSOCIATED PRIMES

  • Divaani-Aazar, K.;Tousi, M.
    • 대한수학회지
    • /
    • 제36권5호
    • /
    • pp.847-853
    • /
    • 1999
  • The purpose of this paper is to develop the theory of coassociated primes and to investigate Melkersson's question [8].

  • PDF