• 제목/요약/키워드: primal-dual interior-point methods

검색결과 20건 처리시간 0.024초

POLYNOMIAL COMPLEXITY OF PRIMAL-DUAL INTERIOR-POINT METHODS FOR CONVEX QUADRATIC PROGRAMMING

  • Liu, Zhongyi;Sun, Wenyu;De Sampaio, Raimundo J.B.
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.567-579
    • /
    • 2009
  • Recently, Peng et al. proposed a primal-dual interior-point method with new search direction and self-regular proximity for LP. This new large-update method has the currently best theoretical performance with polynomial complexity of O($n^{\frac{q+1}{2q}}\;{\log}\;{\frac{n}{\varepsilon}}$). In this paper we use this search direction to propose a primal-dual interior-point method for convex quadratic programming (QP). We overcome the difficulty in analyzing the complexity of the primal-dual interior-point methods for convex quadratic programming, and obtain the same polynomial complexity of O($n^{\frac{q+1}{2q}}\;{\log}\;{\frac{n}{\varepsilon}}$) for convex quadratic programming.

  • PDF

NEW PRIMAL-DUAL INTERIOR POINT METHODS FOR P*(κ) LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.655-669
    • /
    • 2010
  • In this paper we propose new primal-dual interior point methods (IPMs) for $P_*(\kappa)$ linear complementarity problems (LCPs) and analyze the iteration complexity of the algorithm. New search directions and proximity measures are defined based on a class of kernel functions, $\psi(t)=\frac{t^2-1}{2}-{\int}^t_1e{^{q(\frac{1}{\xi}-1)}d{\xi}$, $q\;{\geq}\;1$. If a strictly feasible starting point is available and the parameter $q\;=\;\log\;\(1+a{\sqrt{\frac{2{\tau}+2{\sqrt{2n{\tau}}+{\theta}n}}{1-{\theta}}\)$, where $a\;=\;1\;+\;\frac{1}{\sqrt{1+2{\kappa}}}$, then new large-update primal-dual interior point algorithms have $O((1\;+\;2{\kappa})\sqrt{n}log\;n\;log\;{\frac{n}{\varepsilon}})$ iteration complexity which is the best known result for this method. For small-update methods, we have $O((1\;+\;2{\kappa})q{\sqrt{qn}}log\;{\frac{n}{\varepsilon}})$ iteration complexity.

선형계획을 위한 내부점법의 원문제-쌍대문제 로그장벽법 (A primal-dual log barrier algorithm of interior point methods for linear programming)

  • 정호원
    • 경영과학
    • /
    • 제11권3호
    • /
    • pp.1-11
    • /
    • 1994
  • Recent advances in linear programming solution methodology have focused on interior point methods. This powerful new class of methods achieves significant reductions in computer time for large linear programs and solves problems significantly larger than previously possible. These methods can be examined from points of Fiacco and McCormick's barrier method, Lagrangian duality, Newton's method, and others. This study presents a primal-dual log barrier algorithm of interior point methods for linear programming. The primal-dual log barrier method is currently the most efficient and successful variant of interior point methods. This paper also addresses a Cholesky factorization method of symmetric positive definite matrices arising in interior point methods. A special structure of the matrices, called supernode, is exploited to use computational techniques such as direct addressing and loop-unrolling. Two dense matrix handling techniques are also presented to handle dense columns of the original matrix A. The two techniques may minimize storage requirement for factor matrix L and a smaller number of arithmetic operations in the matrix L computation.

  • PDF

내부해로부터 최적기저 추출에 관한 연구

  • 박찬규;박순달
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.24-29
    • /
    • 1996
  • If the LP problem doesn't have the optimal soultion uniquely, the solution fo the primal-dual barrier method converges to the interior point of the optimal face. Therefore, when the optimal vertex solution or the optimal basis is required, we have to perform the additional procedure to recover the optimal basis from the final solution of the interior point method. In this paper the exisiting methods for recovering the optimal basis or identifying the optimal solutions are analyzed and the new methods are suggested. This paper treats the two optimal basis recovery methods. One uses the purification scheme and the simplex method, the other uses the optimal face solutions. In the method using the purification procedure and the simplex method, the basic feasible solution is obtained from the given interior solution and then simplex method is performed for recovering the optimal basis. In the method using the optimal face solutions, the optimal basis in the primal-dual barrier method is constructed by intergrating the optimal solution identification technique and the optimal basis extracting method from the primal-optimal soltion and the dual-optimal solution.

  • PDF

NEW COMPLEXITY ANALYSIS OF PRIMAL-DUAL IMPS FOR P* LAPS BASED ON LARGE UPDATES

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • 대한수학회보
    • /
    • 제46권3호
    • /
    • pp.521-534
    • /
    • 2009
  • In this paper we present new large-update primal-dual interior point algorithms for $P_*$ linear complementarity problems(LAPS) based on a class of kernel functions, ${\psi}(t)={\frac{t^{p+1}-1}{p+1}}+{\frac{1}{\sigma}}(e^{{\sigma}(1-t)}-1)$, p $\in$ [0, 1], ${\sigma}{\geq}1$. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*$ LAPS. We showed that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*$ LAPS have $O((1+2+\kappa)n^{{\frac{1}{p+1}}}lognlog{\frac{n}{\varepsilon}})$ complexity bound. When p = 1, we have $O((1+2\kappa)\sqrt{n}lognlog\frac{n}{\varepsilon})$ complexity which is so far the best known complexity for large-update methods.

선형계획문제의 강성다항식 계산단계 기법에 관한 연구 (A Study on the Strong Polynomial Time Algorithm for the Linear Programming)

  • 정성진;강완모;정의석;허홍석
    • 대한산업공학회지
    • /
    • 제19권4호
    • /
    • pp.3-11
    • /
    • 1993
  • We propose a new dual simplex method using a primal interior point. The dropping variable is chosen by utilizing the primal feasible interior point. For a given dual feasible basis, its corresponding primal infeasible basic vector and the interior point are used for obtaining a decreasing primal feasible point The computation time of moving on interior point in our method takes much less than that od Karmarker-type interior methods. Since any polynomial time interior methods can be applied to our method we conjectured that a slight modification of our method can give a polynomial time complexity.

  • PDF

A NEW PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권1호
    • /
    • pp.41-53
    • /
    • 2009
  • A primal-dual interior point method(IPM) not only is the most efficient method for a computational point of view but also has polynomial complexity. Most of polynomialtime interior point methods(IPMs) are based on the logarithmic barrier functions. Peng et al.([14, 15]) and Roos et al.([3]-[9]) proposed new variants of IPMs based on kernel functions which are called self-regular and eligible functions, respectively. In this paper we define a new kernel function and propose a new IPM based on this kernel function which has $O(n^{\frac{2}{3}}log\frac{n}{\epsilon})$ and $O(\sqrt{n}log\frac{n}{\epsilon})$ iteration bounds for large-update and small-update methods, respectively.

  • PDF

비가능 내부점 방법에 있어서 안정적 수렴에 대하여 (On Stable Convergence in Infeasible Interior-Point Methods)

  • 설동렬;성명기;박순달
    • 한국국방경영분석학회지
    • /
    • 제25권2호
    • /
    • pp.97-105
    • /
    • 1999
  • When infeasible interior-point methods are applied to large-scale linear programming problems, they become unstable and cannot solve the problems if convergence rates of primal feasibility, dual feasibility and duality gap are not well-balanced. We can balance convergence rates of primal feasibility, dual feasibility and duality gap by introducing control parameters. As a result, the stability and the efficiency of infeasible interior-point methods can be improved.

  • PDF

AN ELIGIBLE KERNEL BASED PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi
    • 호남수학학술지
    • /
    • 제35권2호
    • /
    • pp.235-249
    • /
    • 2013
  • It is well known that each kernel function defines primal-dual interior-point method (IPM). Most of polynomial-time interior-point algorithms for linear optimization (LO) are based on the logarithmic kernel function ([9]). In this paper we define new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has $\mathcal{O}(({\log}\;p)^{\frac{5}{2}}\sqrt{n}{\log}\;n\;{\log}\frac{n}{\epsilon})$ and $\mathcal{O}(q^{\frac{3}{2}}({\log}\;p)^3\sqrt{n}{\log}\;\frac{n}{\epsilon})$ iteration complexity for large- and small-update methods, respectively. These are currently the best known complexity results for such methods.

AN ELIGIBLE PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi;Lee, Yong-Hoon
    • East Asian mathematical journal
    • /
    • 제29권3호
    • /
    • pp.279-292
    • /
    • 2013
  • It is well known that each kernel function defines a primal-dual interior-point method(IPM). Most of polynomial-time interior-point algorithms for linear optimization(LO) are based on the logarithmic kernel function([2, 11]). In this paper we define a new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has ${\mathcal{O}}((log\;p){\sqrt{n}}\;log\;n\;log\;{\frac{n}{\epsilon}})$ and ${\mathcal{O}}((q\;log\;p)^{\frac{3}{2}}{\sqrt{n}}\;log\;{\frac{n}{\epsilon}})$ iteration bound for large- and small-update methods, respectively. These are currently the best known complexity results.