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NEW COMPLEXITY ANALYSIS OF PRIMAL-DUAL IMPS
FOR P∗ LAPS BASED ON LARGE UPDATES

Gyeong-Mi Cho and Min-Kyung Kim

Abstract. In this paper we present new large-update primal-dual in-
terior point algorithms for P∗ linear complementarity problems(LAPS)

based on a class of kernel functions, ψ(t) = tp+1−1
p+1

+ 1
σ

(eσ(1−t) − 1),

p ∈ [0, 1], σ ≥ 1. It is the first to use this class of kernel functions in
the complexity analysis of interior point method(IPM) for P∗ LAPS. We
showed that if a strictly feasible starting point is available, then new
large-update primal-dual interior point algorithms for P∗ LAPS have

O((1 + 2κ)n
1

p+1 logn log n
ε
) complexity bound. When p = 1, we have

O((1+2κ)
√
n logn log n

ε
) complexity which is so far the best known com-

plexity for large-update methods.

1. Introduction

In this paper we consider the following linear complementarity problem
(LCP):

(1) s = Mx+ q, xs = 0, x ≥ 0, s ≥ 0,

where M ∈ Rn×n is a P∗(κ) matrix and x, s, q ∈ Rn, and xs denotes the
componentwise product of vectors x and s.

LAPS have many applications, e.g., linear and quadratic programming, find-
ing a Nash-equilibrium in bimatrix games, economies with institutional restric-
tions upon prices, contact problems with friction, optimal stopping in Markov
chains, circuit simulation, free boundary problems, and calculating the interval
hull of linear systems of interval equations ([14]).

Kojima et al. ([6, 10]) first introduced the primal-dual IPM for linear op-
timization(LO) problem. Since then many other algorithms have been devel-
oped based on the primal-dual strategy. Subsequently, Kojima, Mizuno, and
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Yoshise ([8]) generalized the algorithm in [6] to monotone linear complementar-
ity problems, i.e., P∗(0) LAPS, where the target is reduced with a small-update.
They also proposed an O(

√
nL) potential reduction algorithm ([9]). Since then

an interior point algorithm’s quality is measured by the fact whether it can
be generalized to P∗(κ) LAPS or not ([5]). Several variants of the Mizuno-
Todd-Ye type predictor-corrector interior point algorithm are proposed. First,
Miao ([11]) extended the Mizuno-Todd-Ye predictor-corrector method to P∗(κ)
LAPS. His algorithm uses the l2 neighborhood of the central path and has
O((1 + κ)

√
nL) iteration complexity. Later, Illés and Nagy ([5]) give a version

of Mizuno-Todd-Ye predictor-corrector interior point algorithm for the P∗(κ)
LCP and show O((1 + κ)

3
2
√
nL) iteration complexity.

Most of the classical primal-dual interior point method (IPM) for LO are
based on the use of the logarithmic barrier function, e.g. see [13]. Peng et
al. ([12]) introduced self-regular barrier functions for primal-dual IMPS for LO
and obtained the best complexity result for large-update primal-dual IMPS
for LO with some specific self-regular barrier functions. Recently, Bai et al.
([2]) proposed a new class of barrier functions which are called eligible and not
logarithmic barrier nor self-regular and they presented a unified computational
framework for the complexity analysis of the algorithm. They greatly simplified
the analysis of IMPS.

In this paper we generalized the large-update primal-dual interior point al-
gorithm ([1]) for LO to P∗ LCP. The analysis in this paper uses the analysis
scheme presented in [2]. Since we define a neighborhood and a search direction
based on kernel functions which are neither logarithmic nor self-regular and
don’t use the condition (iii) of eligible function (Definition 2.5), the analysis
is different from the ones in [5], [7], [8], [9], and [11]. When p = 1, we have
O((1+2κ)

√
n log n log n

ε ) complexity which is similar to the one in [1] which is
so far the best known complexity for large-update IPM. In [1], they analyzed
the complexity bound of the algorithm for LO based on all eligible conditions.
But we used three eligible conditions.

This paper is organized as follows. In Section 2 we recall some basic defini-
tions and introduce the algorithm. In Section 3 we give the properties of the
kernel function. In Section 4 we compute the feasible step size and the amount
of decrease of the proximity function during an inner iteration. Finally, in
Section 5 we obtain the complexity result of the algorithm.

We use the following notations throughout the paper : Rn+ denotes the set of
n dimensional nonnegative vectors and Rn++, the set of n dimensional positive
vectors. For x = (x1, x2, . . . , xn)T ∈ Rn, xmin = min{x1, x2, . . . , xn}, i.e.,
the minimal component of x, ‖x‖ is the 2-norm of x, and X is the diagonal
matrix from vector x, i.e., X = diag(x). xs denotes the componentwise product
(Hadamard product) of vectors x and s. xT s is the scalar product of the vectors
x and s. e is the n-dimensional vector of ones and I is the n-dimensional identity
matrix. J is the index set, i.e., J = {1, 2, . . . , n}. We write f(x) = O(g(x)) if
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|f(x)| ≤ k|g(x)| for some positive constant k and f(x) = Θ(g(x)) if k1|g(x)| ≤
|f(x)| ≤ k2|g(x)| for some positive constants k1 and k2.

2. Preliminaries

In this section we give some basic definitions and introduce the new al-
gorithm. P∗(κ) matrix is first introduced by Kojima et al.([7]) which is the
generalization of positive semi-definite matrices, i.e., P∗(0) matrix.

Definition 2.1. Let κ be a nonnegative number. A matrix M ∈ Rn×n is called
a P∗(κ) matrix if

(1 + 4κ)
∑

i∈J+(x)

xi(Mx)i +
∑

i∈J−(x)

xi(Mx)i ≥ 0

for all x ∈ Rn, where

J+(x) = {i ∈ J : xi(Mx)i ≥ 0} and J−(x) = {i ∈ J : xi(Mx)i < 0}.
Definition 2.2. A matrix M ∈ Rn×n is called a P∗ matrix if it is a P∗(κ)
matrix for some κ ≥ 0, i.e., P∗ =

⋃
κ≥0 P∗(κ).

Note that the class P∗ contains the class PSD of positive semi-definite ma-
trices, i.e., matrices M satisfying xTMx ≥ 0 for all x ∈ Rn, and the class P of
matrices with all the principal minors positive. We denote the strictly feasible
set of LCP (1) by Fo, i.e.,

Fo := {(x, s) ∈ R2n
++ : s = Mx+ q}.

Definition 2.3. A (x, s) ∈ Fo is an ε-approximate solution if and only if
xT s ≤ ε for ε > 0.

Definition 2.4. A function f : D(⊂ R) → R is exponentially convex if and
only if f(

√
x1x2) ≤ 1

2 (f(x1) + f(x2)) for all x1, x2 ∈ D.
Definition 2.5. A function ψ(∈ C3) : (0,∞) → R is eligible if it satisfies the
following conditions:

(i) tψ
′′
(t) + ψ

′
(t) > 0, t > 0,

(ii) ψ
′′′

(t) < 0, t > 0,
(iii) 2ψ

′′
(t)2 − ψ

′
(t)ψ

′′′
(t) > 0, 0 < t ≤ 1,

(iv) ψ
′′
(t)ψ

′
(βt)− βψ

′
(t)ψ

′′
(βt) > 0, t > 1, β > 1.

In the following we cite some well-known results. For proofs and details see
the book of Kojima et al. ([7]).

Proposition 2.6 (Lemma 4.1 in [7]). Let κ ≥ 0. If M ∈ Rn×n is a P∗(κ)
matrix, then

M ′ =
( −M I

S X

)

is a nonsingular matrix for any positive diagonal matrices X, S ∈ Rn×n.
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Corollary 2.7. Let M ∈ Rn×n be a P∗(κ) matrix and x, s ∈ Rn++. Then for
all a ∈ Rn the system {

−M∆x+ ∆s = 0,
S∆x+X∆s = a

has a unique solution (∆x,∆s).

We use this corollary to prove that the modified Newton-system (7) has a
unique solution.

In IMPS to find an ε-approximate solution for (1) we relax the comple-
mentarity condition, i.e., the second equation in (1), and we get the following
parameterized system:

(2) s = Mx+ q, xs = µe, x > 0, s > 0,

where µ > 0. Without loss of generality, we assume that (1) is strictly feasible,
i.e., there exists (x0, s0) such that s0 = Mx0 +q, x0 > 0, s0 > 0, and moreover,
we have an initial strictly feasible point with Ψ(x0, s0, µ0) ≤ τ for some µ0 > 0,
where Ψ is the proximity function which will be defined in (6). Indeed, we
may not have an available strictly feasible point (x0, s0). In order to solve
this difficulty, we embed (1) to an artificial LCP which has a strictly feasible
point([7]). For given strictly feasible point (x0, s0) we can always find a µ0 > 0
such that Ψ(x0, s0, µ0) ≤ τ. Since M is a P∗(κ) matrix and (1) is strictly
feasible, (2) has a unique solution for any µ > 0. We denote the solution of
(2) as (x(µ), s(µ)) for given µ > 0. We also call it µ-center for given µ and the
solution set {(x(µ), s(µ)) | µ > 0} the central path for system (1). Note that
the sequence (x(µ), s(µ)) approaches to the solution (x, s) of the system (1) as
µ→ 0 ([7]). For notational convenience we define the following :

d =
√
x

s
, v =

√
xs

µ
, dx =

v∆x
x

, ds =
v∆s
s
.(3)

Then we have the scaled Newton-system as follows:

(4)

{
−M̄dx + ds = 0,
dx + ds = v−1 − v,

where M̄ = DMD and D = diag(d).
Note that v−1 − v in (4) is exactly the negative gradient of the logarithmic

barrier function Ψl(v) =
∑n
i=1 ψl(vi), ψl(t) = (t2 − 1)/2− log t. In this paper

we replace the scaled centering equation, the second equation in (4), with

(5) dx + ds = −∇Ψ(v),

where

Ψ(v) =
n∑

i=1

ψ(vi), ψ(t) =
tp+1 − 1
p+ 1

+
1
σ

(eσ(1−t) − 1), t > 0, p ∈ [0, 1], σ ≥ 1.

(6)
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Since limt→0+ ψ(t) = 1
σ (eσ − 1) − 1

p+1 < ∞, Ψ(v) is a finite barrier function
which is different from other barrier functions in [2]. We call ψ(t) the kernel
function of Ψ(v). We use Ψ(v) as the proximity function between the µ-center
and the current iterate for the given µ > 0. Then we have the following modified
Newton system:

(7)

{
−M∆x+ ∆s = 0,
S∆x+X∆s = −µv∇Ψ(v).

Since M is a P∗(κ) matrix and (1) is strictly feasible, the system uniquely
defines a search direction (∆x,∆s) by Corollary 2.7, Throughout the paper,
we assume that a proximity parameter τ and a barrier update parameter θ are
given and τ = O(n) and 0 < θ < 1, fixed. The algorithm works as follows: We
assume that a strictly feasible point (x, s) is given which is in a τ -neighborhood
of the given µ-center. Then after decreasing µ to µ+ = (1− θ)µ for some fixed
θ ∈ (0, 1), we solve the modified Newton system (7) to obtain the unique search
direction. The positivity condition of a new iterate is ensured with the right
choice of the step size α. This procedure is repeated until we find a new iterate
(x+, s+) which is in a τ -neighborhood of the µ+-center and then we let µ := µ+

and (x, s) := (x+, s+). Then µ is again reduced by the factor 1−θ and we solve
the modified Newton system targeting at the new µ+-center, and so on. This
process is repeated until µ is small enough, e.g. nµ ≤ ε.

Algorithm

Input:
A threshold parameter τ > 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
starting point (x0, s0) and µ0 > 0 such that Ψ(x0, s0, µ0) ≤ τ ;
begin
x := x0; s := s0; µ := µ0;
while nµ > ε do
begin
µ := (1− θ)µ;
while Ψ(v) > τ do
begin
solve the modified Newton-system (7) for ∆x and ∆s;
determine a step size α̃ from (20);
x := x+ α̃∆x;
s := s+ α̃∆s;
end
end
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end

Remark 2.8. One distinguishes IMPS as large-update methods when τ = O(n),
θ = Θ(1) and small-update methods when τ = O(1), θ = Θ( 1√

n
). The small-

update methods have better iteration complexity than large-update, but in
practice large-update methods are more efficient than small-update.

3. Properties of the kernel function

For ψ(t) in (6) we have

ψ
′
(t) = tp − eσ(1−t), ψ

′′
(t) = ptp−1 + σeσ(1−t),(8)

ψ
′′′

(t) = p(p− 1)tp−2 − σ2eσ(1−t).

Since ψ
′′
(t) > 0, ψ(t) is strictly convex, t > 0. Note that for p ∈ [0, 1] and

σ ≥ 1, ψ(1) = ψ
′
(1) = 0. Hence ψ(t) is determined by the second derivative,

i.e., ψ(t) =
∫ t
1

∫ ξ
1
ψ
′′
(ς)dςdξ. We also define the norm-based proximity measure

δ := δ(v) as follows:

δ := δ(v) =
1
2
‖ ∇Ψ(v) ‖= 1

2
‖ dx + ds ‖ .(9)

Note that since Ψ(v) is strictly convex and minimal at v = e, we have

Ψ(v) = 0 ⇔ δ(v) = 0 ⇔ v = e.

In the following lemma we give key properties which are important in the
complexity analysis.

Lemma 3.1 (Lemma 2.1 and Lemma 2.4 in [4]). Kernel function ψ(t) satisfies
the following properties.

(i) tψ
′′
(t) + ψ

′
(t) ≥ 0, t ≥ 1

σ .

(ii) ψ
′′′

(t) < 0, t > 0,
(iii) ψ

′′
(t)ψ

′
(βt)− βψ

′
(t)ψ

′′
(βt) > 0, t > 1, β > 1.

(iv) tψ
′
(t)− ψ(t) ≥ 0, t ≥ 1,

(v) ψ(t) ≤ tp+1

p+1 , t ≥ 1.

By Lemma 3.1 (i) and Lemma 1 in [12], ψ(t) is exponentially convex for t ≥ 1
σ .

Let % : [0,∞) → [1,∞) be the inverse function of ψ(t) for t ≥ 1. Then we have
the following lemma.

Lemma 3.2 (Section 5.1 in [4]). For σ ≥ 2, %(s) ≤ 1 +
√

2(s2 + s), s ≥ 0.

Note that at the start of outer iteration of the algorithm, just before the
update of µ with the factor 1 − θ, we have Ψ(v) ≤ τ. Due to the update of µ
the vector v is divided by the factor

√
1− θ with 0 < θ < 1 which in general

leads to an increase in the value of Ψ(v). Then, during the subsequent inner
iterations, Ψ(v) decreases until it passes the threshold τ again. Hence, during
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the process of the algorithm the largest values of Ψ(v) occur just after the
updates of µ.

In the following lemma we give an estimate for the effect of a µ-update on
the value of Ψ(v).

Lemma 3.3. Assume that σ ≥ 2. If Ψ(v) ≤ τ , then we have for 0 < θ < 1

Ψ(
v√

1− θ
) ≤ n

(p+ 1)(1− θ)
p+1
2

(
1 +

1
n

√
2(τ2 + nτ)

)p+1

.

Proof. By the definition of % and 1√
1−θ ≥ 1, we have 1√

1−θ%
(

Ψ(v)
n

)
≥ 1. By

Theorem 3.2 in [2], Lemma 3.2, and Lemma 3.1 (v), we have

Ψ(
v√

1− θ
) ≤ nψ



%

(
Ψ(v)
n

)

√
1− θ


 ≤ nψ

(
1 + 1

n

√
2(τ2 + nτ)√
1− θ

)

≤ n

(p+ 1)(1− θ)
p+1
2

(
1 +

1
n

√
2(τ2 + nτ)

)p+1

.
¤

Define

L :=
n

(p+ 1)(1− θ)
p+1
2

(
1 +

1
n

√
2(τ2 + nτ)

)p+1

.(10)

Then L is an upper bound of Ψ(v) during the process of the algorithm. By
taking τ = O(n) and θ = Θ(1), L = O(n). Using Lemma 3.1 (iv), we have the
following lemma.

Lemma 3.4 (Lemma 3.1 in [4]). Let δ be the norm-based proximity measure
as defined in (9). If Ψ(v) ≥ 1, then we have

δ ≥ 1
6
Ψ(v)

p
p+1 .

Lemma 3.5 (Lemma 2.7 in [4]). Suppose that L ≥ 9 and Ψ(v) ≤ L. If
σ ≥ 1 + 2 log(L+ 1), then vi >

3
2σ for all i = 1, . . . , n.

In this paper we assume that L ≥ 9. Then

σ = 1 + 2 log(L+ 1) ≥ 1 + 2 log 10 ≥ 5.(11)

Using Lemma 3.5, we have vmin >
3
2σ .

4. Computation of the step size and the decrease

In this section we compute the feasible step size α such that the proximity
function is decreasing and the bound for the decrease. At the start of the inner
iterations we have τ < Ψ(v) ≤ L, where L is defined in (10).
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Since M is a P∗(κ) matrix and M∆x = ∆s from (7) for ∆x ∈ Rn we have

(1 + 4κ)
∑

i∈J+

∆xi∆si +
∑

i∈J−
∆xi∆si ≥ 0,

where ∆xi and ∆si denote the i-th components of the vectors ∆x and ∆s,
respectively and J+ = {i ∈ J : ∆xi∆si ≥ 0}, J− = J − J+. Since dxds =
v2∆x∆s

xs = ∆x∆s
µ from (3),

(1 + 4κ)
∑

i∈J+

[dx]i[ds]i +
∑

i∈J−
[dx]i[ds]i ≥ 0,(12)

where [dx]i and [ds]i denote the i-th components of the vectors dx and ds,
respectively.

In the following lemma we compute the bound for ‖dx‖ and ‖ds‖. For the
proof and details, the reader can refer to Lemma 4.2 in [3].

Lemma 4.1 (Lemma 4.2 in [3]). Let δ be as defined in (9). Then we have∑n
i=1([dx]

2
i +[ds]2i ) ≤ 4(1+2κ)δ2 , ‖dx‖ ≤ 2

√
1 + 2κ δ, and ‖ds‖ ≤ 2

√
1 + 2κ δ.

Lemma 4.2. Suppose that L ≥ 9, Ψ(v) ≤ L and σ ≥ 1 + 2 log (L + 1). Let δ
be the value in (9) and σ in (6). Then we have

‖(x−1∆x, s−1∆s)‖ ≤ 4
3
√

1 + 2κ σδ.(13)

Proof. Using Lemma 4.1 and Lemma 3.5, we have

‖(x−1∆x, s−1∆s)‖ = ‖(v−1dx, v
−1ds)‖ ≤ 1

vmin

√
‖dx‖2 + ‖ds‖2

≤ 1
vmin

2
√

1 + 2κ δ =
4
3
√

1 + 2κ σδ. ¤

Define

α̂ :=
3

4
√

1 + 2κ σδ
.(14)

Then we have (x+, s+) > 0 for any α ∈ [0, α̂], where x+ = x + α∆x and
s+ = s+ α∆s. Indeed, if ∆x > 0, it is clear. Otherwise, there exists an index
set J̄ such that J̄ = {i ∈ J : ∆xi < 0}. From (13),

max
i∈J̄

(−x−1∆x)i ≤ ‖ − x−1∆x‖ ≤ 4
3
√

1 + 2κ σδ = α̂−1.

Thus
min
i∈J̄

(−x(∆x)−1)i ≥ α̂ ≥ α

and hence xi + α∆xi > 0, for any i ∈ J̄ and α ∈ [0, α̂]. Hence x+ α∆x > 0 for
any α ∈ [0, α̂]. By the same way, we can get the case s+ = s+α∆s > 0 for any
α ∈ [0, α̂].
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From (3), we have

x+ = x

(
e+ α

∆x
x

)
= x

(
e+ α

dx
v

)
=
x

v
(v + αdx),

s+ = s

(
e+ α

∆s
s

)
= s

(
e+ α

ds
v

)
=
s

v
(v + αds).

Then we have
v2
+ =

x+s+
µ

= (v + αdx)(v + αds).

By Lemma 3.1 (i) and Lemma 1 in [12], Ψ(v) is exponentially convex for v ≥ 1
σ e.

Now we assume that v+αdx ≥ 1
σ e and v+αds ≥ 1

σ e for some α which will be
computed in (20). Then we have

Ψ(v+) = Ψ(
√

(v + αdx)(v + αds)) ≤ 1
2

(Ψ(v + αdx) + Ψ(v + αds)).

For given µ > 0 by letting f(α) be the difference of the new and old proximity
measures, i.e.,

f(α) = Ψ(v+)−Ψ(v).
Then we have f(α) ≤ f1(α), where

f1(α) :=
1
2
(Ψ(v + αdx) + Ψ(v + αds))−Ψ(v).

Note that f(0) = f1(0) = 0. By taking the derivative of f1(α) with respect to
α, we have

f
′
1(α) =

1
2

n∑

i=1

(ψ
′
(vi + α[dx]i)[dx]i + ψ

′
(vi + α[ds]i)[ds]i).

Using (5) and the definition of δ, we have

f
′
1(0) =

1
2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2δ2.(15)

By taking the derivative of f
′
1(α) with respect to α, we have

f
′′
1 (α) =

1
2

n∑

i=1

(ψ
′′
(vi + α[dx]i)[dx]2i + ψ

′′
(vi + α[ds]i)[ds]2i ).(16)

In the following lemma we obtain the upper bound for the difference of the
new and old proximity measures.

Lemma 4.3 (Modification of Lemma 4.3 in [3]). For α ∈ [0, α̂] we have

f
′′
1 (α) ≤ 2(1 + 2κ) δ2ψ

′′
(vmin − 2α

√
1 + 2κ δ).

Lemma 4.4 (Modification of Lemma 4.4 in [3]). For α ∈ [0, α̂] we have f
′
1(α) ≤

0 if α is satisfying

−ψ′(vmin − 2αδ
√

1 + 2κ) + ψ
′
(vmin) ≤ 2δ√

1 + 2κ
.(17)
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Let ρ : [0,− 1
2ψ

′
(0)) → (0, 1] be the inverse function of − 1

2ψ
′
(t) for t ∈ (0, 1].

Letting s = − 1
2ψ

′
(t), we have t = ρ(s) and 2s = −ψ′(t) = eσ(1−t) − tp. Since

t ≤ 1, we have

eσ(1−t) = 2s+ tp ≤ 2s+ 1.(18)

In the following lemma, we compute the feasible step size α such that the
proximity measure is decreasing when we take a new iterate for fixed µ.

Lemma 4.5 (Modification of Lemma 4.5 in [3]). Let ρ be the inverse function
of − 1

2ψ
′
(t), t ∈ (0, 1]. Then the largest step size α that satisfies (17) is given

by

ᾱ :=
1

2δ
√

1 + 2κ

(
ρ(δ)− ρ

((
1 +

1√
1 + 2κ

)
δ

))
.(19)

In the following lemma we compute the lower bound for ᾱ in (19).

Lemma 4.6. Let ρ and ᾱ be the values as defined in Lemma 4.5. Then we
have

ᾱ ≥ 1
1 + 2κ

1
ψ′′(ρ((1 + 1√

1+2κ
)δ))

≥ 1
16(1 + 2κ)σδ

.

Proof. By the definition of ρ, − 1
2ψ

′
(ρ(δ)) = δ, i.e., −ψ′(ρ(δ)) = 2δ. By tak-

ing the derivative of −ψ′ with respect to δ, we get −ψ′′(ρ(δ))ρ′(δ) = 2.
So we have ρ

′
(δ) = − 2

ψ′′ (ρ(δ))
< 0 since ψ

′′
> 0. Hence ρ is monotoni-

cally decreasing. Using (19) and the fundamental theorem of calculus, we
have ᾱ = 1

2δ
√

1+2κ
(ρ(δ) − ρ((1 + 1√

1+2κ
)δ)) = 1

2δ
√

1+2κ

∫ δ
(1+ 1√

1+2κ
)δ
ρ
′
(ξ)dξ =

1
δ
√

1+2κ

∫ (1+ 1√
1+2κ

)δ

δ
dξ

ψ′′ (ρ(ξ))
. Since δ ≤ ξ ≤ (1 + 1√

1+2κ
)δ and ρ is monotoni-

cally decreasing, ρ(ξ) ≥ ρ((1+ 1√
1+2κ

)δ). Since ψ
′′

is monotonically decreasing,

ψ
′′
(ρ(ξ)) ≤ ψ

′′
(ρ((1+ 1√

1+2κ
)δ)). Hence 1

ψ′′ (ρ(ξ))
≥ 1

ψ′′ (ρ((1+ 1√
1+2κ

)δ))
. Therefore

we have

ᾱ ≥ 1
δ
√

1 + 2κ
1

ψ′′(ρ((1 + 1√
1+2κ

)δ))

∫ (1+ 1√
1+2κ

)δ

δ

dξ

=
1

1 + 2κ
1

ψ′′(ρ((1 + 1√
1+2κ

)δ))
.

For the notational convenience let a := 1 + 1√
1+2κ

. Then a ≤ 2. Letting

t = ρ(aδ), we have − 1
2ψ

′
(t) = aδ, i.e., 2aδ = −ψ′(t). Using the definition of ρ

and (18), we have

eσ(1−t) ≤ 2aδ + 1
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and 1
σ ≤ t ≤ 1. Using Lemma 3.4, we have for p ∈ [0, 1] and 1

σ ≤ t ≤ 1,

ᾱ ≥ 1
(1 + 2κ)

1
ψ′′(ρ(aδ))

=
1

(1 + 2κ)
1

ψ′′(t)
=

1
(1 + 2κ)

1
ptp−1 + σeσ(1−t)

≥ 1
(1 + 2κ)

1
pσ1−p + σeσ(1−t) ≥

1
(1 + 2κ)

1
σ(1 + eσ(1−t))

≥ 1
(1 + 2κ)

1
σ(2aδ + 2)

=
1

2(1 + 2κ)
1

σ(aδ + 1)

≥ 1
2(1 + 2κ)

1
σ(2δ + 6δ)

≥ 1
16(1 + 2κ)σδ

.
¤

Define

α̃ :=
1

16(1 + 2κ)σδ
.(20)

Then by Lemma 4.6 and (14), we have α̃ ≤ min{ᾱ, α̂} and hence α̃ is a strictly
feasible step size such that the proximity function decreases. Using Lemma 4.1
and (20), we have for all i = 1, . . . , n

vi + α̃[dx]i ≥ vmin − 2
√

1 + 2κα̃δ ≥ 3
2σ

− 1
8
√

1 + 2κσ
≥ 11

8σ
≥ 1
σ
,

and hence v+α̃dx ≥ 1
σ e. By the same way, vi+α̃[ds]i ≥ vmin−2

√
1 + 2κα̃δ ≥ 1

σ ,

for i = 1, . . . , n, and hence v + α̃ds ≥ 1
σ e. Thus we will use α̃ as the default

step size in the algorithm.

Lemma 4.7 (Lemma 12 in [12]). Let h(t) be a twice differentiable convex
function with h(0) = 0, h

′
(0) < 0 and attain its (global) minimum at t∗ > 0.

If h
′′
(t) is increasing for t ∈ [0, t∗], then h(t) ≤ th

′
(0)
2 for 0 ≤ t ≤ t∗.

In the following we obtain the bound for the decrease of the proximity func-
tion value.

Lemma 4.8 (Lemma 4.8 in [3]). For α ≤ α̃ we have f(α) ≤ −αδ2.
Proof. Define the univariate function h as follows:

h(0) = f1(0) = 0, h
′
(0) = f

′
1(0) = −2δ2,

h
′′
(α) = 2(1 + 2κ)δ2ψ

′′
(vmin − 2α

√
1 + 2κδ).

By Lemma 4.3, f
′′
1 (α) ≤ h

′′
(α). So we have f

′
1(α) ≤ h

′
(α) and f1(α) ≤ h(α).

By the definition of h(α) and ψ
′′
(t) > 1, h

′′
(α) ≥ 2(1 + κ)δ2. This implies

that h(α) is strongly convex and hence h(α) attains its global minimum for
some α∗ > 0. By taking α ≤ ᾱ, with ᾱ as defined in Lemma 4.5, using the
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fundamental theorem of calculus, and Lemma 4.4, we have

h
′
(α) = h

′
(0) +

∫ α

0

h
′′
(ξ)dξ

= −2δ2 + 2(1 + 2κ)δ2
∫ α

0

ψ′′(vmin − 2ξ
√

1 + 2κδ)dξ

= −2δ2 −√1 + 2κδ(ψ
′
(vmin − 2α

√
1 + 2κδ)− ψ

′
(vmin))

≤ −2δ2 +
√

1 + 2κδ
2δ√

1 + 2κ
= 0.

Since h
′′′

(α) = −4(1 + 2κ)
3
2 δ3 ψ

′′′
(vmin − 2α

√
1 + 2κδ) and ψ

′′′
< 0, h

′′
(α)

is increasing in α. By Lemma 4.7, we have f1(α) ≤ h(α) ≤ 1
2αh

′
(0) = −αδ2.

Since f(α) ≤ f1(α), the proof is completed. ¤

In the following theorem we obtain the upper bound for the difference f(α)
between the new and old proximity measures in the algorithm.

Theorem 4.9. Let α̃ be the step size as defined in (20). Then we have

f(α̃) ≤ − Ψ(v)
p

p+1

96(1 + 2κ)σ
,(21)

where p ∈ [0, 1], σ in (11).

Proof. Using Lemma 4.8, (19) and Lemma 3.4, we have

f(α̃) ≤ −α̃δ2 = − δ2

16(1 + 2κ)σδ
= − δ

16(1 + 2κ)σ
≤ − Ψ(v)

p
p+1

96(1 + 2κ)σ
.

¤

5. Complexity results

In this section we compute the total number of iterations for the algorithm
to get an ε-approximate solution. We cite the following technical lemma to
obtain iteration bounds. For the proof the reader can refer [12].

Lemma 5.1 (Lemma A.2 in [2]). Let t0, t1, . . . , tK be a sequence of positive
numbers such that tk+1 ≤ tk − βt1−γk , k = 0, 1, . . . ,K − 1, where β > 0 and
0 < γ ≤ 1. Then K ≤ b t

γ
0
βγ c.

We define the value of Ψ(v) after the µ-update as Ψ0 and the subsequent values
in the same outer iteration are denoted as Ψk, k = 1, 2, . . .. Let K be the total
number of inner iterations in the outer iteration. Then by the definition of K,
we have

ΨK−1 > τ, 0 ≤ ΨK ≤ τ.

In the following lemma, we obtain the upper bound for the total number of
inner iterations which we needed to return to the τ -neighborhood again.
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Lemma 5.2. Let K be the total number of inner iterations in an outer iteration.
Then we have

K ≤ 96(1 + 2κ)σ(p+ 1)Ψ
1

p+1
0 ,

where Ψ0 denotes the value of Ψ(v) after the µ-update.

Proof. Using Theorem 4.9, we have f(α̃) ≤ − Ψ(v)
p

p+1

96(1+2κ)σ . This implies that
Ψk+1 ≤ Ψk − βΨk

1−γ , k = 0, 1, 2, . . . ,K − 1, where β = 1
96(1+2κ)σ , γ = 1

p+1 .

Hence by Lemma 5.1, K is bounded above by K ≤ Ψγ
0

βγ = 96(1 + 2κ)σ(p +

1)Ψ
1

p+1
0 . ¤

From (10), we have

Ψ0 ≤ L :=
n

(p+ 1)(1− θ)
p+1
2

(
1 +

1
n

√
2(τ2 + nτ)

)p+1

.

From Lemma 5.2, we have

K ≤ 96(1 + 2κ)σ(p+ 1)
p

p+1
n

1
p+1

√
1− θ

(
1 +

1
n

√
2(τ2 + nτ)

)
.

The upper bound for the total number of iterations is obtained by multiplying
the number K by the number of central path parameter updates. If the central
path parameter µ has the initial value µ0 and is updated by multiplying 1− θ,
with 0 < θ < 1, then after at most d 1

θ log nµ0

ε e iterations we have nµ ≤ ε.
Thus the total number of iterations is bounded above by 96(1 + 2κ)σ(p +

1)
p

p+1 n
1

p+1

θ
√

1−θ (1 + 1
n

√
2(τ2 + nτ)) log nµ0

ε . So we obtain the main result.

Theorem 5.3. Let a P∗(κ) linear complementarity problem be given, where
κ ≥ 0. Assume that a strictly feasible starting point (x0, s0) is available with
Ψ(x0, s0, µ0) ≤ τ for some µ0 > 0 and L ≥ 9 and σ = 1+2 log(L+1). Then the
total number of iterations to get an ε-approximate solution is bounded above by

d 96(1 + 2κ)σ(p+ 1)
p

p+1
n

1
p+1

√
1− θ

(
1 +

1
n

√
2(τ2 + nτ)

)
ed 1

θ
log

nµ0

ε
e.

Remark 5.4. By taking τ = O(n), θ = Θ(1), and σ = O(log n), the algorithm
has O((1 + 2κ)n

1
p+1 log n log n

ε ) iteration complexity. If p = 1, then we have
O((1+2κ)

√
n log n log n

ε ) complexity which is so far the best known complexity
for large-update.
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