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NEW PRIMAL-DUAL INTERIOR POINT METHODS FOR
P∗(κ) LINEAR COMPLEMENTARITY PROBLEMS

Gyeong-Mi Cho and Min-Kyung Kim

Abstract. In this paper we propose new primal-dual interior point meth-
ods (IPMs) for P∗(κ) linear complementarity problems (LCPs) and an-
alyze the iteration complexity of the algorithm. New search directions
and proximity measures are defined based on a class of kernel functions,

ψ(t) = t2−1
2

− R t
1 e

q
“

1
ξ
−1
”
dξ, q ≥ 1. If a strictly feasible starting point

is available and the parameter q = log

„
1 + a

q
2τ+2

√
2nτ+θn

1−θ

«
, where

a = 1 + 1√
1+2κ

, then new large-update primal-dual interior point algo-

rithms have O((1 + 2κ)
√
n logn log n

ε
) iteration complexity which is the

best known result for this method. For small-update methods, we have
O((1 + 2κ)q

√
qn log n

ε
) iteration complexity.

1. Introduction

In this paper we consider linear complementarity problem (LCP) as follows:

(1) s = Mx+ q, xs = 0, x ≥ 0, s ≥ 0,

where M ∈ Rn×n is a P∗(κ) matrix and x, s, q ∈ Rn, and xs denotes the
componentwise product of vectors x and s.

LCPs have many applications, e.g., linear and quadratic programming, find-
ing a Nash-equilibrium in bimatrix games, economies with institutional restric-
tions upon prices, contact problems with friction, optimal stopping in Markov
chains, circuit simulation, free boundary problems, and calculating the interval
hull of linear systems of interval equations ([14]).

The primal-dual interior point method (IPM) for linear optimization (LO)
problem was first proposed in [6] and [9]. Since then many other algorithms
have been developed based on the primal-dual strategy. Subsequently, Kojima
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et al. [7] generalized the algorithm in [6] to monotone linear complementar-
ity problems, that is P∗(0) LCPs. They also proposed an O(

√
nL) poten-

tial reduction algorithm ([8]). Several variants of the Mizuno-Todd-Ye type
predictor-corrector interior point algorithm are proposed. First, Miao [10] ex-
tended the Mizuno-Todd-Ye predictor-corrector method to P∗(κ) LCPs. His
algorithm uses the l2 neighborhood of the central path and has O((1+κ)

√
nL)

iteration complexity. Later, Illés et al. [4] give a version of Mizuno-Todd-Ye
predictor-corrector interior point algorithm for the P∗(κ) LCP and obtained
O((1 + κ)

3
2
√
nL) iteration complexity.

Most of the classical primal-dual IPM for LO are based on the use of the
logarithmic kernel function, e.g. see [13]. Peng et al. [12] introduced self-
regular kernel functions for primal-dual IPMs for LO and obtained the best
complexity result for large-update primal-dual IPMs for LO with a specific self
regular kernel function. Recently, Bai et al. [1] proposed a new class of eligible
kernel functions and proposed a unified framework for the complexity analysis
of the algorithm. They greatly simplified the complexity analysis of IPMs.

In this paper we propose a new primal-dual IPM for P∗(κ) LCP based on a
new class of kernel functions which generalize the function defined in [1]. For the
complexity analysis we follow the scheme presented in [1]. When the parameter

q = log
(

1 +
(
1 + 1√

1+2κ

) √
2τ+2

√
2nτ+θn

1−θ

)
, we have O((1+2κ)

√
n logn log n

ε )

iteration complexity for large-update methods which is so far the best known
complexity result. For small-update methods, we have O((1 + 2κ)q

√
qn log n

ε )
iteration complexity result.

This paper is organized as follows: In Section 2 we recall basic concepts and
the notion of the central path. In Section 3 we describe the kernel function
and its properties. Finally, in Section 4 we obtain the complexity result of the
algorithm.

We use the following notations throughout the paper : Rn
+ denotes the set of

n dimensional nonnegative vectors and Rn
++, the set of n dimensional positive

vectors. For x = (x1, x2, . . . , xn)T ∈ Rn, xmin = min{x1, x2, . . . , xn}, i.e., the
minimal component of x, ‖x‖ is the 2-norm of x, and X is the diagonal matrix
from a vector x, i.e., X = diag(x). xs denotes the componentwise product of
vectors x and s. xT s is the scalar product of the vectors x and s. e is the
n-dimensional vector of ones and I is the n-dimensional identity matrix. J is
the index set, i.e., J = {1, 2, . . . , n}. For f(t), g(t) : R++ → R++, we write
f(t) = O(g(t)) if f(t) ≤ kg(t) for some positive constant k and f(t) = Θ(g(t))
if k1g(t) ≤ f(t) ≤ k2g(t) for some positive constants k1 and k2.

2. Preliminaries

We give some basic concepts and introduce the generic IPM.

Definition 2.1. A function ψ : R+ → R+ is called a kernel function if ψ is
twice differentiable and the following conditions are satisfied:
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(i) ψ
′
(1) = ψ(1) = 0,

(ii) ψ
′′
(t) > 0, t > 0,

(iii) limt→0+ ψ(t) = limt→∞ ψ(t) = ∞.

Definition 2.2. A function f : D(⊂ R) → R is exponentially convex if and
only if f(

√
x1x2) ≤ 1

2 (f(x1) + f(x2)) for all x1, x2 ∈ D.
We denote the strictly feasible set of LCP (1) by Fo, i.e.,

Fo := {(x, s) ∈ R2n
++ : s = Mx+ q}.

Definition 2.3. A (x, s) ∈ Fo is an ε-approximate solution if and only if
xT s ≤ ε for ε > 0.

P∗(κ) matrix is first introduced by Kojima et al. [5] which is the general-
ization of positive semi-definite matrices.

Definition 2.4. Let κ ≥ 0. A matrix M ∈ Rn×n is called a P∗(κ) matrix if

(1 + 4κ)
∑

i∈J+(x)

xi(Mx)i +
∑

i∈J−(x)

xi(Mx)i ≥ 0

for all x ∈ Rn, where

J+(x) = {i ∈ J : xi(Mx)i ≥ 0} and J−(x) = {i ∈ J : xi(Mx)i < 0}.
Definition 2.5. A matrix M ∈ Rn×n is called a P∗ matrix if it is a P∗(κ)
matrix for some κ ≥ 0, i.e., P∗ =

⋃
κ≥0 P∗(κ).

Note that the class P∗ contains the class PSD of positive semi-definite ma-
trices, and the class P of matrices with all the principal minors positive.

Proposition 2.6 ([5]). If M ∈ Rn×n is a P∗(κ) matrix, then

M ′ =
( −M I

S X

)

is a nonsingular matrix for any positive diagonal matrices X, S ∈ Rn×n.

Corollary 2.7. Let M ∈ Rn×n be a P∗(κ) matrix and x, s ∈ Rn
++. Then for

all a ∈ Rn the system {
−M∆x+ ∆s = 0,
S∆x+X∆s = a

has a unique solution (∆x,∆s).

In generic IPM, to find an ε-approximate solution for (1) we perturb the
complementarity condition, i.e., the second equation in (1), and we get the
following parameterized system:

(2) s = Mx+ q, xs = µe, x > 0, s > 0,

where µ > 0. Without loss of generality, we assume that (1) is strictly feasible,
i.e., there exists (x0, s0) such that s0 = Mx0 +q, x0 > 0, s0 > 0, and moreover,
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we have an initial strictly feasible point with Ψ(x0, s0, µ0) ≤ τ for some µ0 > 0.
Indeed, we may not have an available strictly feasible point (x0, s0). In order
to solve this difficulty, we embed (1) to an artificial LCP which has a strictly
feasible point ([5]). For this given strictly feasible point (x0, s0) we can always
find a µ0 > 0 such that Ψ(x0, s0, µ0) ≤ τ. Since M is a P∗(κ) matrix and (1) is
strictly feasible, (2) has a unique solution for any µ > 0. We denote the solution
of (2) as (x(µ), s(µ)) for given µ > 0. We also call it µ-center for given µ and
the solution set {(x(µ), s(µ)) | µ > 0} the central path for system (1). Note
that the sequence (x(µ), s(µ)) approaches to the solution (x, s) of the system
(1) as µ→ 0 ([5]). We define the following notations:

d =
√
x

s
, v =

√
xs

µ
, dx =

v∆x
x

, ds =
v∆s
s
.(3)

Then we have the scaled Newton-system as follows:

(4)

{
−M̄dx + ds = 0,

dx + ds = v−1 − v,

where M̄ = DMD and D = diag(d).
Note that the righthand side of the second equation in (4) is exactly the

negative gradient of the logarithmic barrier function Ψl(v),

Ψl(v) =
n∑

i=1

ψl(vi), ψl(t) =
t2 − 1

2
− log t.

In this paper we replace the second equation in (4) with

(5) dx + ds = −∇Ψ(v),

where

Ψ(v) =
n∑

i=1

ψ(vi), ψ(t) =
t2 − 1

2
−

∫ t

1

eq( 1
ξ−1)dξ, q ≥ 1.(6)

So we get the following modified Newton system:

(7)

{
−M∆x+ ∆s = 0,
S∆x+X∆s = −µv∇Ψ(v).

Since M is a P∗(κ) matrix and (1) is strictly feasible, this system uniquely
defines a new search direction (∆x,∆s) by Corollary 2.7. Throughout the
paper, we assume that a proximity parameter τ and a barrier update parameter
θ are given, 0 < θ < 1. The algorithm works as follows. We assume that a
strictly feasible point (x, s) is given which is in a τ -neighborhood of the given
µ-center. Then after decreasing µ to µ+ = (1 − θ)µ for some fixed θ ∈ (0, 1),
we solve the modified Newton system (7) to obtain the unique search direction.
The positivity condition of a new iterate is ensured with the right choice of
the step size α which is defined by some line search rule. This procedure is
repeated until we find a new iterate (x+, s+) that is in a τ -neighborhood of
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the µ+-center and then we let µ := µ+ and (x, s) := (x+, s+). Then µ is again
reduced by the factor 1−θ and we solve the modified Newton system targeting
at the new µ+-center, and so on. This process is repeated until µ is small
enough, e.g. nµ ≤ ε.

Algorithm

Input:
A threshold parameter τ > 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
starting point (x0, s0) and µ0 > 0 such that Ψ(x0, s0, µ0) ≤ τ ;

begin
x := x0; s := s0; µ := µ0;
while nµ > ε do
begin
µ := (1− θ)µ;
while Ψ(v) > τ do
begin

solve (7) for ∆x and ∆s;
determine a step size α from (18);
x := x+ α∆x;
s := s+ α∆s;

end
end

end

Remark 2.8. One distinguishes IPMs as large-update methods when θ = Θ(1)
and small-update methods when θ = Θ( 1√

n
).

3. Properties of the kernel function

For ψ(t) in (6), we have

ψ
′
(t) = t− eq( 1

t−1), ψ
′′
(t) = 1 +

q

t2
eq( 1

t−1), ψ
′′′

(t) = −q(q + 2t)
t4

eq( 1
t−1).(8)

Since ψ
′′
(t) > 0, ψ(t) is strictly convex. Note that

ψ(1) = ψ
′
(1) = 0, ψ

′′′
(t) < 0, t > 0.

And due to ψ(1) = ψ
′
(1) = 0, ψ(t) is determined by the second derivative:

ψ(t) =
∫ t

1

∫ ξ

1

ψ
′′
(ς)dςdξ.(9)
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Note that since Ψ(v) is strictly convex and minimal at v = e, we have

Ψ(v) = 0 ⇔ δ(v) = 0 ⇔ v = e.

We use Ψ(v) as a proximity function between the current iterate and the µ-
center. We also define the norm-based proximity measure δ(v) as follows:

δ(v) =
1
2
‖ ∇Ψ(v) ‖= 1

2
‖ dx + ds ‖ .(10)

In the following lemma we provide a lower bound for δ(v) in terms of the
proximity function Ψ(v).

Lemma 3.1. We have δ(v) ≥
√

Ψ(v)
2 .

Proof. Using (9) and ψ
′′
(t) ≥ 1, we have

ψ(t) =
∫ t

1

∫ ξ

1

ψ
′′
(ς)dςdξ ≤

∫ t

1

∫ ξ

1

ψ
′′
(ξ)ψ

′′
(ς)dςdξ

=
∫ t

1

ψ
′′
(ξ)ψ

′
(ξ)dξ =

1
2
ψ
′
(t)2.

Using the definition of Ψ and δ(v), we have

Ψ(v) =
n∑

i=1

ψ(vi) ≤ 1
2

n∑

i=1

ψ
′
(vi)2 =

1
2
‖∇Ψ(v)‖2 = 2δ(v)2.

Since δ(v) ≥ 0, we get the desired result. ¤

In the following lemma we give key properties which are important in the
analysis of Algorithm.

Lemma 3.2 (Section 3 in [2]). The kernel function ψ(t) in (6) satisfies the
following properties:

(i) tψ
′′
(t) + ψ

′
(t) > 0, t > 0,

(ii) ψ
′′′

(t) < 0, t > 0,
(iii) 2ψ

′′
(t)2 − ψ

′
(t)ψ

′′′
(t) > 0, 0 < t ≤ 1,

(iv) ψ
′′
(t)ψ

′
(βt)− βψ

′
(t)ψ

′′
(βt) > 0, t > 1, β > 1.

By Lemma 3.2 (i) and Lemma 1 in [12], we get the following result.

Corollary 3.3. The kernel function ψ(t) is exponentially convex, i.e., ψ(
√
t1t2)

≤ 1
2 (ψ(t1) + ψ(t2)), t1, t2 > 0.

Let % : [0,∞) → [1,∞) be the inverse function of ψ(t) for t ≥ 1 and ρ :
[0,∞) → (0, 1] the inverse function of − 1

2ψ
′
(t) for t ∈ (0, 1]. For the kernel

function ψ(t) = t2−1
2 − ∫ t

1
eq( 1

ξ−1)dξ, q ≥ 1, we denote the barrier term as

ψb(t) = −
∫ t

1

eq( 1
ξ−1)dξ, q ≥ 1.
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Let ρ : [0,∞) → (0, 1] be the inverse function of −ψ′b(t), t ∈ (0, 1]. Then we
have the following lemma.

Lemma 3.4. We have the following:
(i) ψ(t) ≤ 1+q

2 (t− 1)2, t ≥ 1.
(ii)

√
1 + 2s ≤ %(s) ≤ 1 +

√
2s, s ≥ 0.

(iii) ρ(s) ≥ ρ(1 + 2s), s > 0.

Proof. (i) Using Taylor’s Theorem, ψ(1) = ψ
′
(1) = 0, ψ

′′
(1) = 1 + q and

ψ
′′′

(t) < 0, we have

ψ(t) = ψ(1) + ψ
′
(1)(t− 1) +

1
2
ψ
′′
(1)(t− 1)2 +

1
3!
ψ
′′′

(ξ)(ξ − 1)3

=
1
2
(1 + q)(t− 1)2 +

1
3!
ψ
′′′

(ξ)(ξ − 1)3

≤ 1
2
(1 + q)(t− 1)2

for some ξ such that 1 ≤ ξ ≤ t.
(ii) Since s = ψ(t) = t2−1

2 + ψb(t) ≤ t2−1
2 , we have t = %(s) ≥ √

1 + 2s. On
the other hand, by (9) and (8), s = ψ(t) =

∫ t

1

∫ ξ

1
ψ
′′
(ς)dςdξ ≥ ∫ t

1

∫ ξ

1
dςdξ =

1
2 (t − 1)2. Thus t = %(s) ≤ 1 +

√
2s. Hence we have

√
1 + 2s ≤ %(s) ≤ 1 +√

2s, s ≥ 0.
(iii) Let t = ρ(s). By the definition of ρ, −2s = ψ

′
(t) = t + ψ

′
b(t), t ≤ 1.

By t ≤ 1 and the definition of ρ, −ψ′b(ρ(s)) = −ψ′b(t) = t + 2s ≤ 1 + 2s =

−ψ′b(ρ(1 + 2s)). Since −ψ′′b (t) = − q
t2 e

q( 1
t−1) < 0, −ψ′b(t) is monotonically

decreasing. Thus we have t = ρ(s) ≥ ρ(1 + 2s). ¤

Letting s = −ψ′b(t), we have ρ(s) = q
q+log s , s > 0. By Lemma 3.4(iii), we

have

ρ(s) ≥ ρ(1 + 2s) =
q

q + log(1 + 2s)
, s ≥ 0.(11)

Note that at the start of outer iteration of the algorithm, just before the update
of µ with the factor 1− θ, we have Ψ(v) ≤ τ. Due to the update of µ the vector
v is divided by the factor

√
1− θ, with 0 < θ < 1, which in general leads to

an increase in the value of Ψ(v). Then, during the subsequent inner iterations,
Ψ(v) decreases until it passes the threshold τ again. Hence, during the course
of the algorithm the largest values of Ψ(v) occur just after the updates of µ.
In the following lemma we give an estimate for the effect of a µ-update on the
value of Ψ(v).

Lemma 3.5. If Ψ(v) ≤ τ , then we have for 0 < θ < 1,

(i) Ψ
(

v√
1−θ

)
≤ 2τ+2

√
2nτ+θn

2(1−θ) ,

(ii) Ψ
(

v√
1−θ

)
≤ (1+q)(θ

√
n+
√

2τ)2

2(1−θ) .
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Proof. (i) By the definition of % and 1√
1−θ

≥ 1, 1√
1−θ

%
(

Ψ(v)
n

)
≥ 1. By Theorem

3.2 in [1], Lemma 3.4(ii), and ψ(t) ≤ t2−1
2 , t ≥ 1, we have

Ψ
(

v√
1− θ

)

≤ nψ

(
%(Ψ(v)

n )√
1− θ

)
≤ nψ


1 +

√
2Ψ(v)

n

1− θ


 ≤ n

2




(
1 +

√
2τ
n

)2

1− θ
− 1




=
n

2




2τ
n + 2

√
2τ
n + θ

1− θ


 =

2τ + 2
√

2nτ + θn

2(1− θ)
.

(ii) Using Theorem 3.2 in [1], Lemma 3.4(i) and (ii), we have

Ψ
(

v√
1− θ

)

≤ nψ

(
%(Ψ(v)

n )√
1− θ

)
≤ (1 + q)n

2

(
%(Ψ(v)

n )√
1− θ

− 1

)2

≤ (1 + q)n
2


1 +

√
2Ψ(v)

n −√1− θ
√

1− θ




2

≤ (1 + q)n
2


θ +

√
2Ψ(v)

n√
1− θ




2

=
(1 + q)(θ

√
n+

√
2τ)2

2(1− θ)
.

The last inequality holds because 1−√1− θ = θ
1+
√

1−θ
≤ θ. ¤

We define

Ψ̃0 :=
2τ + 2

√
2nτ + θn

2(1− θ)
and Ψ̂0 :=

(1 + q)(θ
√
n+

√
2τ)2

2(1− θ)
.(12)

We will use Ψ̃0 for large-update methods and Ψ̂0 for small-update methods.

4. Complexity analysis

In this section we compute the total number of iterations of Algorithm. Since
P∗(κ) LCPs are generalization of LO problems, we loose the orthogonality of
the search direction vectors dx and ds. After a damped step for fixed µ we have

x+ = x+ α∆x, s+ = s+ α∆s.

Then by (3), we have

x+ = x

(
e+ α

∆x
x

)
= x

(
e+ α

dx

v

)
=
x

v
(v + αdx),
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s+ = s

(
e+ α

∆s
s

)
= s

(
e+ α

ds

v

)
=
s

v
(v + αds).

Then we have
v2
+ =

x+s+
µ

= (v + αdx)(v + αds).

Throughout the paper we assume that the step size α is such that the coordi-
nates of the vectors v + αdx and v + αds are positive. Hence by Corollary 3.3,
we have

Ψ(v+) = Ψ(
√

(v + αdx)(v + αds) ) ≤ 1
2

(Ψ(v + αdx) + Ψ(v + αds)).

For given µ > 0 by letting f(α) be the difference of the new and old proximity
measures, i.e.,

f(α) = Ψ(v+)−Ψ(v),
we have f(α) ≤ f1(α), where

f1(α) :=
1
2
(Ψ(v + αdx) + Ψ(v + αds))−Ψ(v).

Note that f(0) = f1(0) = 0. By taking the derivative of f1(α) with respect to
α, we have

f
′
1(α) =

1
2

n∑

i=1

(ψ
′
(vi + α[dx]i)[dx]i + ψ

′
(vi + α[ds]i)[ds]i),

where [dx]i and [ds]i denote the i-th components of the vectors dx and ds,
respectively. From (5) and the definition of δ,

f
′
1(0) =

1
2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2δ(v)2.(13)

By taking the derivative of f
′
1(α) with respect to α, we have

f
′′
1 (α) =

1
2

n∑

i=1

(ψ
′′
(vi + α[dx]i)[dx]2i + ψ

′′
(vi + α[ds]i)[ds]2i ).(14)

Since M is a P∗(κ) matrix and M∆x = ∆s from (7), for ∆x ∈ Rn we have

(1 + 4κ)
∑

i∈J+

∆xi∆si +
∑

i∈J−

∆xi∆si ≥ 0,

where J+ = { i ∈ J : ∆xi∆si ≥ 0 }, J− = J − J+. Since dxds = v2∆x∆s
xs =

∆x∆s
µ and µ > 0,

(1 + 4κ)
∑

i∈J+

[dx]i[ds]i +
∑

i∈J−

[dx]i[ds]i ≥ 0.(15)

For notational convenience we define

δ := δ(v), σ+ =
∑

i∈J+

[dx]i[ds]i , σ− = −
∑

i∈J−

[dx]i[ds]i.

In the following we cite some lemmas in [3] for the analysis of the algorithm.
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Lemma 4.1 (Modification of Lemma 4.1 in [3]). σ+ ≤ δ2 and σ− ≤ (1 +
4κ)δ2.

Lemma 4.2 (Modification of Lemma 4.2 in [3]).
∑n

i=1([dx]2i + [ds]2i ) ≤ 4(1 +
2κ)δ2, ‖dx‖ ≤ 2

√
1 + 2κ δ, and ‖ds‖ ≤ 2

√
1 + 2κ δ.

Lemma 4.3 (Modification of Lemma 4.3 in [3]). f
′′
1 (α) ≤ 2(1+2κ) δ2ψ

′′
(vmin−

2α
√

1 + 2κ δ).

Lemma 4.4 (Modification of Lemma 4.4 in [3]). f
′
1(α) ≤ 0 if α is satisfying

−ψ′(vmin − 2αδ
√

1 + 2κ) + ψ
′
(vmin) ≤ 2δ√

1 + 2κ
.(16)

Lemma 4.5 (Modification of Lemma 4.5 in [3]). Let ρ : [0,∞) → (0, 1] denote
the inverse function of the restriction of − 1

2ψ
′
(t) to the interval (0, 1]. Then

the largest step size α that satisfies (16) is given by

ᾱ :=
1

2δ
√

1 + 2κ

(
ρ(δ)− ρ

((
1 +

1√
1 + 2κ

)
δ

))
.(17)

Lemma 4.6 (Modification of Lemma 4.6 in [3]). Let ρ and ᾱ be as defined in
Lemma 4.5. Then we have

ᾱ ≥ 1
1 + 2κ

1
ψ′′(ρ((1 + 1√

1+2κ
)δ))

.

Define

α̃ =
1

1 + 2κ
1

ψ′′(ρ((1 + 1√
1+2κ

)δ))
(18)

and we will use α̃ as the default step size in our Algorithm. By Lemma 4.6, we
have ᾱ ≥ α̃. In the following, we want to evaluate the decrease of the proximity
function value. We cite the following result in [12] without proof.

Lemma 4.7 (Lemma 12 in [12]). Let h(t) be a twice differentiable convex
function with h(0) = 0, h

′
(0) < 0 and let h(t) attains its (global) minimum at

t∗ > 0. If h
′′
(t) is increasing for t ∈ [0, t∗], then

h(t) ≤ th
′
(0)
2

, 0 ≤ t ≤ t∗.

Lemma 4.8 (Modification of Lemma 4.8 in [3]). If the step size α is such that
α ≤ ᾱ, then f(α) ≤ −αδ2.
Theorem 4.9. Let α̃ be a step size as defined in (18). Then we have

f(α̃) ≤ − 1
1 + 2κ

δ2

ψ′′(ρ((1 + 1√
1+2κ

)δ))
.(19)
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Proof. By Lemma 4.6 and (18), α̃ ≤ ᾱ. By Lemma 4.8, we get the desired
result. ¤

Lemma 4.10. The right hand side in (19) is monotonically decreasing in δ.

Proof. Let t = ρ(aδ) where a = 1 + 1√
1+2κ

. Then 0 < t ≤ 1 and −ψ′(ρ(aδ)) =

2aδ, i.e., 1
2ψ

′
(t) = − 1

2ψ
′
(ρ(aδ)) = aδ. Then

1
1 + 2κ

δ2

ψ′′(ρ((1 + 1√
1+2κ

)δ))
=

1
4a2(1 + 2κ)

ψ
′
(t)

2

ψ′′(t)
.

Define

g(t) =
1

4a2(1 + 2κ)
ψ
′
(t)

2

ψ′′(t)
.

Since ρ is monotonically decreasing, t is monotonically decreasing if δ increases.
Hence the right hand in (19) is monotonically decreasing in δ if and only if the
function g(t) is monotonically decreasing for 0 < t ≤ 1. Note that g(1) = 0
and

g
′
(t) =

1
4a2(1 + 2κ)

ψ
′
(t){2ψ′′(t)2 − ψ

′
(t)ψ

′′′
(t)}

ψ′′(t)2
.

Since ψ
′
(1) = 0 and ψ

′′
> 0, ψ

′
(t) ≤ 0 for 0 < t ≤ 1. By Lemma 3.2(iii), g(t)

is monotonically decreasing for 0 < t ≤ 1. Hence the lemma is proved. ¤

Lemma 4.11 (Lemma 14 in [12]). Let t0, t1, . . . , tK be a sequence of positive
numbers such that

tk+1 ≤ tk − κt1−γ
k , k = 0, 1, . . . ,K − 1,

where κ > 0 and 0 < γ ≤ 1. Then K ≤ b tγ
0

κγ c.
We define the value of Ψ(v) after the µ-update as Ψ0 and the subsequent values
in the same outer iteration as Ψk, k = 1, 2, . . . . Let K denote the total number
of inner iterations in the outer iteration. Then by the definition of K, we have

ΨK−1 > τ, 0 ≤ ΨK ≤ τ.

Note that Ψ0 ≤ min{Ψ̃0, Ψ̂0}.
In the following lemma, we compute the upper bound for the total number

of inner iterations which we needed to return to the τ -neighborhood again. For
notational convenience we denote Ψ(v) by Ψ and a = 1 + 1√

1+2κ
.

Lemma 4.12. Let K be the total number of inner iterations in an outer iter-
ation. Then we have

K ≤ 8(1 +
√

2)(1 + 2κ)q
(

1 +
1
q

log
(
1 + a

√
2Ψ0

))2

Ψ
1
2
0 ,

where Ψ0 denotes the value of Ψ(v) after the µ-update.
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Proof. Since ψ
′′′

(t) < 0, ψ
′′
(t) is a decreasing function. Using (19) and (11),

we have

f(α̃) ≤ − 1
1 + 2κ

δ2

ψ′′(ρ(δa))
≤ − 1

1 + 2κ
δ2

ψ′′
(

q
q+log(1+2aδ)

) .

By Lemma 4.10 and Lemma 3.1, we have

f(α̃) ≤ − 1
1 + 2κ

Ψ
2


ψ′′


 q

q + log
(
1 + 2a

√
Ψ
2

)







−1

.

Since ψ
′′
(t) = 1 + q

t2 e
q( 1

t−1),

ψ
′′


 q

q + log
(
1 + 2a

√
Ψ
2

)


 = 1 + q(1 + a

√
2Ψ)

(
1 +

1
q

log(1 + a
√

2Ψ)
)2

.

Hence we have

f(α̃) ≤ − Ψ
2(1 + 2κ)

1

1 + q(1 + a
√

2Ψ)
(
1 + 1

q log(1 + a
√

2Ψ)
)2 .(20)

Assuming Ψ0 ≥ Ψ ≥ τ ≥ 1 and using a = 1 + 1√
1+2κ

≤ 2, we have

1 + a
√

2Ψ ≤ 1 + 2
√

2Ψ ≤ (1 + 2
√

2)
√

Ψ.

From (20), we have

f(α̃) ≤ − Ψ
2(1 + 2κ)

1
√

Ψq(2 + 2
√

2)
(
1 + 1

q log(1 + a
√

2Ψ)
)2

≤ −
√

Ψ
4(1 + 2κ)

1

q(1 +
√

2)
(
1 + 1

q log(1 + a
√

2Ψ0)
)2 .

This implies that

Ψk+1 ≤ Ψk − βΨk
1−γ , k = 0, 1, 2, . . . ,K − 1,

where

β =
1

4(1 +
√

2)(1 + 2κ)q
(
1 + 1

q log(1 + a
√

2Ψ0)
)2 , γ =

1
2
.

Hence by Lemma 4.11, we have

K ≤ Ψγ
0

βγ
= 8(1 +

√
2)(1 + 2κ)q

(
1 +

1
q

log(1 + a
√

2Ψ0)
)2

Ψ
1
2
0 .(21)

This completes the proof. ¤
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From (12) and (21), we have

K ≤ 8(1 +
√

2)(1 + 2κ)q
(

1 +
1
q

log(1 + a
√

2Ψ0)
)2

(
2τ + 2

√
2nτ + θn

2(1− θ)

) 1
2

.

The upper bound for the total number of iterations is obtained by multiplying
the number K by the number of central path parameter updates. If the central
path parameter µ has the initial value µ0 and is updated by multiplying 1− θ,
with 0 < θ < 1, then after at most

d 1
θ

log
nµ0

ε
e(22)

iterations we have nµ ≤ ε. Thus the total number of iterations is bounded
above by

8(1+
√

2)(1+2κ)q
(

1 +
1
q

log(1 + a
√

2Ψ0)
)2

(
2τ + 2

√
2nτ + θn

2(1− θ)

) 1
2 1
θ

log
nµ0

ε
.

In the following we give the main result.

Theorem 4.13. Let a P∗(κ) linear complementarity problem be given, where
κ ≥ 0. Assume that a strictly feasible starting point (x0, s0) is available with
Ψ(x0, s0, µ0) ≤ τ for some µ0 > 0. Then the total number of iterations for our
Algorithm is bounded above by

d 8(1+
√

2)(1+2κ)q
(
1 + 1

q log(1 + a
√

2Ψ0)
)2 (

2τ+2
√

2nτ+θn
2(1−θ)

) 1
2 ed 1

θ log nµ0

ε e.

Remark 4.14. For large-update methods with τ = O(n) and θ = Θ(1), we have

Ψ̃0 = O(n). When the parameter q = log
(

1 + a
√

2τ+2
√

2nτ+θn
1−θ

)
where a =

1+ 1√
1+2κ

, we have O((1+2κ)
√
n logn log n

ε ) iteration complexity which is the
best known complexity result so far. For small-update methods with τ = O(1)
and θ = Θ( 1√

n
), we have Ψ̂0 = O(q). Hence we have O((1 + 2κ)q

√
qn log n

ε )
iteration complexity for small-update methods which is so far the best known
result for such methods.

Example 4.15. Consider the LCP in which

M =
(

0 1
−2 0

)
, q =

(
2
3

)
.

Then M is a P∗(1/4) matrix and the solution of this problem is (x∗; s∗) =
(0, 0, 2, 3)T . Numerical results of the algorithm with τ = 1, ε = 10−2, θ = 0.5,
µ0 = 1, and (x0; s0) = (0.1, 0.05, 1.5, 2.7)T are given in the following table.
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outer iterations v1 v2 Ψ(v)
1 0.5477 0.5196 0.5847
2 0.7746 0.7348 0.1402
3 1.0914 1.0392 0.0102
4 1.5492 1.4697 0.4633
5 2.1909 2.0785 2.9325

Then after 5 outer iterations we have x = (0.0005, 0.0016)T and s = (1.4516,
2.8990)T .
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