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NEW PRIMAL-DUAL INTERIOR POINT METHODS FOR
P,.(k) LINEAR COMPLEMENTARITY PROBLEMS

GYEONG-MI CHO AND MIN-KYUNG KM

ABSTRACT. In this paper we propose new primal-dual interior point meth-

ods (IPMs) for Pi(k) linear complementarity problems (LCPs) and an-

alyze the iteration complexity of the algorithm. New search directions

and proximity measures are defined based on a class of kernel functions,
2 1_

P(t) = % — flt eq(§ 1) d€, g > 1. If a strictly feasible starting point

2742vV2n7+60n ) , where

is available and the parameter ¢ = log (1 +a -

a =14 —L— then new large-update primal-dual interior point algo-

V12K’
rithms have O((1 4 2x)/nlognlog ) iteration complexity which is the

best known result for this method. For small-update methods, we have
O((1 + 2k)q./qnlog %) iteration complexity.

1. Introduction
In this paper we consider linear complementarity problem (LCP) as follows:
(1) s=Mzx+gq, xs=0, >0, s>0,

where M € R™ " is a P.(k) matrix and z,s,q € R", and xs denotes the
componentwise product of vectors x and s.

LCPs have many applications, e.g., linear and quadratic programming, find-
ing a Nash-equilibrium in bimatrix games, economies with institutional restric-
tions upon prices, contact problems with friction, optimal stopping in Markov
chains, circuit simulation, free boundary problems, and calculating the interval
hull of linear systems of interval equations ([14]).

The primal-dual interior point method (IPM) for linear optimization (LO)
problem was first proposed in [6] and [9]. Since then many other algorithms
have been developed based on the primal-dual strategy. Subsequently, Kojima
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et al. [7] generalized the algorithm in [6] to monotone linear complementar-
ity problems, that is P,(0) LCPs. They also proposed an O(y/nL) poten-
tial reduction algorithm ([8]). Several variants of the Mizuno-Todd-Ye type
predictor-corrector interior point algorithm are proposed. First, Miao [10] ex-
tended the Mizuno-Todd-Ye predictor-corrector method to P.(x) LCPs. His
algorithm uses the l» neighborhood of the central path and has O((1+ k)+/nL)
iteration complexity. Later, Illés et al. [4] give a version of Mizuno-Todd-Ye
predictor-corrector interior point algorithm for the P,(x) LCP and obtained
O((1 + k)2 /nL) iteration complexity.

Most of the classical primal-dual IPM for LO are based on the use of the
logarithmic kernel function, e.g. see [13]. Peng et al. [12] introduced self-
regular kernel functions for primal-dual IPMs for LO and obtained the best
complexity result for large-update primal-dual IPMs for LO with a specific self
regular kernel function. Recently, Bai et al. [1] proposed a new class of eligible
kernel functions and proposed a unified framework for the complexity analysis
of the algorithm. They greatly simplified the complexity analysis of IPMs.

In this paper we propose a new primal-dual IPM for P,(x) LCP based on a
new class of kernel functions which generalize the function defined in [1]. For the
complexity analysis we follow the scheme presented in [1]. When the parameter

q = log (1 + (1 + 2 ) S 2”T+‘9"), we have O((1+2k)y/nlognlog %)

V1F2k 1-60
iteration complexity for large-update methods which is so far the best known
complexity result. For small-update methods, we have O((1 + 2x)q,/qnlog 2)
iteration complexity result.

This paper is organized as follows: In Section 2 we recall basic concepts and
the notion of the central path. In Section 3 we describe the kernel function
and its properties. Finally, in Section 4 we obtain the complexity result of the
algorithm.

We use the following notations throughout the paper : R’} denotes the set of
n dimensional nonnegative vectors and R’} |, the set of n dimensional positive
vectors. For x = (z1,22,...,7,)7 € R, & = min{xy, 29,...,2,}, ie., the
minimal component of z, ||z|| is the 2-norm of x, and X is the diagonal matrix
from a vector z, i.e., X = diag(x). xs denotes the componentwise product of
vectors z and s. zTs is the scalar product of the vectors z and s. e is the
n-dimensional vector of ones and I is the n-dimensional identity matrix. J is
the index set, i.e., J = {1,2,...,n}. For f(t),g(t) : R, — R, we write
f(®) =0(g(t)) if f(t) < kg(t) for some positive constant k and f(t) = O(g(t))
if k1g(t) < f(t) < kag(t) for some positive constants ki and ko.

2. Preliminaries

We give some basic concepts and introduce the generic IPM.

Definition 2.1. A function ¢ : Ry — R, is called a kernel function if 1 is
twice differentiable and the following conditions are satisfied:
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(i) ' (1) = (1) = 0,

(i) ¥ (¢t) >0,t >0,

(i) limy o+ (t) = limy o0 P(t) = 0.
Definition 2.2. A function f : D(C R) — R is exponentially convex if and
only if f(y/Z1@2) < 5(f(z1) + f(22)) for all z1, x5 € D.

We denote the strictly feasible set of LCP (1) by F°, i.e.,

Foi={(z,s) €RY, : s =Mz +q}.

Definition 2.3. A (z,s) € F° is an e-approximate solution if and only if
2Ts <efore>0.

P, (k) matrix is first introduced by Kojima et al. [5] which is the general-
ization of positive semi-definite matrices.

Definition 2.4. Let x > 0. A matrix M € R™*" is called a P, (k) matrix if
(1+4k) Z x;(Mz); + Z xz;(Mx); >0
ieJy (z) i€J_(z)
for all x € R™, where
Ji(z)={ieJ:z;(Mz); >0} and J_(z) ={i € J : z;(Mz); <0}.
Definition 2.5. A matrix M € R"*" is called a P, matrix if it is a Py(k)

matrix for some £ > 0, i.e., P, = 5o Pi(k).

Note that the class P, contains the class PSD of positive semi-definite ma-
trices, and the class P of matrices with all the principal minors positive.

Proposition 2.6 ([5]). If M € R™*" is a P.(k) matriz, then
, ( -M T
e (55

is a nonsingular matriz for any positive diagonal matrices X, S € R"*",

Corollary 2.7. Let M € R™*" be a P,(x) matriz and x, s € R}, . Then for
all a € R™ the system

—MAz + As =0,

SAz+ XAs=a
has a unique solution (Az,As).

In generic IPM, to find an e-approximate solution for (1) we perturb the
complementarity condition, i.e., the second equation in (1), and we get the
following parameterized system:

(2) s=Mzx+q, xs=pe, x>0,s>0,

where p > 0. Without loss of generality, we assume that (1) is strictly feasible,
i.e., there exists (2°,s°) such that s° = Ma°+¢, 2° > 0, s° > 0, and moreover,
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we have an initial strictly feasible point with W(z?, s, u°) < 7 for some p® > 0.
Indeed, we may not have an available strictly feasible point (2°,s%). In order
to solve this difficulty, we embed (1) to an artificial LCP which has a strictly
feasible point ([5]). For this given strictly feasible point (2%, s°) we can always
find a % > 0 such that ¥(2°,s°, u°) < 7. Since M is a P, (k) matrix and (1) is
strictly feasible, (2) has a unique solution for any p > 0. We denote the solution
of (2) as (x(u),s(w)) for given p > 0. We also call it p-center for given p and
the solution set {(x(u),s(p)) | w > 0} the central path for system (1). Note
that the sequence (x(u),s(u)) approaches to the solution (x,s) of the system
(1) as u — 0 ([5]). We define the following notations:

3) de \[ /a:s _ UA]J7 d, — %As

Then we have the scaled Newton—system as follows:

—Md, +ds = 0,
dy +ds = vt —w,

(4)

where M = DM D and D = diag(d).
Note that the righthand side of the second equation in (4) is exactly the
negative gradient of the logarithmic barrier function ¥;(v),

Zwl (i), hi(t) = %—logt

In this paper we replace the second equation in (4) with
(5) dy +ds = —V\I/(U)7

where
n

2 _ t .
© V=Y. wo=5- [ @@ g

So we get the following modified Newton system:

—MAz + As =0,
SAz 4+ XAs = —puvV¥(v).

(7)

Since M is a P.(x) matrix and (1) is strictly feasible, this system uniquely
defines a new search direction (Ax,As) by Corollary 2.7. Throughout the
paper, we assume that a proximity parameter 7 and a barrier update parameter
0 are given, 0 < 6 < 1. The algorithm works as follows. We assume that a
strictly feasible point (z,s) is given which is in a T-neighborhood of the given
p-center. Then after decreasing p to p = (1 — 0)u for some fixed 6 € (0, 1),
we solve the modified Newton system (7) to obtain the unique search direction.
The positivity condition of a new iterate is ensured with the right choice of
the step size a which is defined by some line search rule. This procedure is
repeated until we find a new iterate (z4,sy) that is in a 7-neighborhood of
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the p4-center and then we let = uy and (,s) := (x4, s4+). Then p is again
reduced by the factor 1 — 6 and we solve the modified Newton system targeting
at the new pu-center, and so on. This process is repeated until p is small
enough, e.g. nu < e.

Algorithm

Input:

A threshold parameter 7 > 1;

an accuracy parameter € > 0;

a fixed barrier update parameter 6, 0 < 6 < 1;

starting point (2%, s%) and pu® > 0 such that ¥ (20, s% %) < 7;
begin

x:=1x% s:=5% p:=pl

while np > ¢ do

begin
p=(1—0)u;
while ¥(v) > 7 do
begin

solve (7) for Az and As;
determine a step size « from (18);

T :=1r + aAux;
s := s+ alAs;
end
end
end

Remark 2.8. One distinguishes IPMs as large-update methods when 8 = (1)

and small-update methods when 6 = @(ﬁ)

3. Properties of the kernel function

For 4(¢) in (6), we have

8) () =t—ei 1) (1) =1+ t%eq(%*l),w"’(t) _ 9+ (31
Since ¢ (t) > 0, ¥(t) is strictly convex. Note that

Y1) =79 (1)=0, 9" (t) <0, t>0.
And due to 1(1) = ¢’ (1) = 0, 1(t) is determined by the second derivative:

(9) vt = | t / 0 (o) dde.
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Note that since ¥(v) is strictly convex and minimal at v = e, we have
U(v)=0 & §(v)=0 & v=e.

We use ¥(v) as a proximity function between the current iterate and the p-
center. We also define the norm-based proximity measure §(v) as follows:

(10) 5(0) = 5 | V) 1= 5 o+ ||

In the following lemma we provide a lower bound for §(v) in terms of the
proximity function ¥(v).

Lemma 3.1. We have 6(v) > 4/ %U)
Proof. Using (9) and 4" (t) > 1, we have

//w d<d§<//z/} §)dsd€
/w e = 2/ (1)

Using the definition of ¥ and d(v), we have
N Lq~ v 1 2 _ 2
=30t < 5 30 @) = 5 IV = 200"

Since d(v) > 0, we get the desired result. O

In the following lemma we give key properties which are important in the
analysis of Algorithm.

Lemma 3.2 (Section 3 in [2]). The kernel function 1(t) in (6) satisfies the
following properties:
(i) t" () +¢'(t) >0, t>0,
() ¢"(t) <0, t >0,
(i) 20" ()2 = ()" (1) >0, 0 <t <1,
(iv) " (' (8t) = BY' ()" (B) > 0, t>1, B> 1.

By Lemma 3.2 (i) and Lemma 1 in [12], we get the following result.

Corollary 3.3. The kernel function 1)(t) is exponentially convex, i.e., 1 (\/t1t2)
< 3(W(t) + ¥(t2)), ta, t2 > 0.

Let g : [0,00) — [1,00) be the inverse function of ¢(t) for ¢ > 1 and p :
[0,00) — (0,1] the inverse functlon of —71/) (t) for t € (0,1]. For the kernel

function ¥(t) = t2_1 f el 1)d§, q > 1, we denote the barrier term as

t
bolt) = —/ e, g > 1.
1
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Let p : [0,00) — (0,1] be the inverse function of —, (1), t € (0,1]. Then we
have the following lemma.
Lemma 3.4. We have the following:
(1) (1) < FUt—-1)% ¢ > 1.
(i) VI+2s<o(s) <1++2s, s>0.
(iii) p(s) > p(1+2s), s > 0.

Proof. (i) Using Taylor’s Theorem, ¥ (1) = ¢ (1) = 0, ¢ (1) = 1+ ¢ and

¥ (t) <0, we have
90 = p(1) + 9 (D~ 1)+ 30" O 17 + 507 (O~ 1)

= S0 a)( - 17+ g (O - 1)

1
<L+ -1)?
for some £ such that 1 < ¢ < t.
(ii) Since s = ¥(t) = tZT_l +p(t) < FT_l, we have t = p(s) > v/1+2s. On
the other hand, by (9) and (8), s = ¥(t) = [i [4"(c)dsde > [I [ dedt =
1(t—1)% Thus t = g(s) < 1+ v2s. Hence we have I +2s < o(s) < 1+

\/%, s> 0.
(iti) Let t = p(s). By the definition of p, —2s = ¥ (t) = t + (), t < 1.
By t < 1 and the definition of p, —,(p(8)) = —h(t) =t + 25 < 1+ 25 =

—w;(g(l + 2s)). Since —1, (1) = —t%eq(%_l) < 0, —¢,(t) is monotonically

decreasing. Thus we have t = p(s) > p(1 + 2s). O
Letting s = —1,(t), we have p(s) = sibgs $ > 0. By Lemma 3.4(iii), we

have

(11) p(s) > p(1+2s) = q

= q+log(1+2s)’820

Note that at the start of outer iteration of the algorithm, just before the update
of u with the factor 1 — 6, we have ¥(v) < 7. Due to the update of u the vector
v is divided by the factor /1 — 0, with 0 < 8 < 1, which in general leads to
an increase in the value of ¥(v). Then, during the subsequent inner iterations,
U(v) decreases until it passes the threshold 7 again. Hence, during the course
of the algorithm the largest values of ¥(v) occur just after the updates of p.
In the following lemma we give an estimate for the effect of a py-update on the
value of ¥(v).

Lemma 3.5. If U(v) < 7, then we have for 0 < 0 < 1,
. v 7+2vV2n7+0n
(i) v (m) S (R

T 1+q)(9v/n+v27)°
(i) W (i) < UFOGYmRETE,
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\/79 (\I’(“)) > 1. By Theorem
3.2 in [1], Lemma 3.4(ii), and ¢(t) < %, t > 1, we have

Proof. (i) By the definition of p and \/7

"(7=9)
V1I—46
2

< ny) <2
VvV1—-106 1—9 2 1-0

2T 27
n T2y t+o 27+ 22n71 + 6On
2 1-6 B 2(1 —6)

(ii) Using Theorem 3.2 in [1], Lemma 3.4(i) and (ii), we have

(g 1y - VI-0 _(tgm (0 e
- 2 VvV1—120 - 2 1-6
_ L+ q)(Ovn+v2r)?
N 2(1-0) '
The last inequality holds because 1 — /1 — 60 = 1+\§ﬂ <4. O
We define
- 2742207 +0n o (+qOyn+ V)
(12) \Ifo = 2(1_0) and \I/U = 2(1_9) .

We will use ¥ for large-update methods and ¥, for small-update methods.

4. Complexity analysis

In this section we compute the total number of iterations of Algorithm. Since
P, (k) LCPs are generalization of LO problems, we loose the orthogonality of
the search direction vectors d, and ds. After a damped step for fixed u we have

ry =x+alAzx, sy =s+als.
Then by (3), we have

Az dy T
ze=zleta— |=zle+a— |==(v+ ad,),
x v v
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As ds s
sy =sleta— |=sle+a—|=—(v+ ads).
s v v

V2 = ””+:+ = (v+ ady) (v + ad,).

Then we have

Throughout the paper we assume that the step size « is such that the coordi-
nates of the vectors v + ad, and v + ad, are positive. Hence by Corollary 3.3,
we have

U(vy) =/ (v+ady)(v+ady) ) < % (U(v+ ady) + ¥(v+ ady)).

For given p > 0 by letting f(a) be the difference of the new and old proximity
measures, i.e.,

fla) =¥(vy) = ¥(v),
we have f(a) < fi(«), where

i) = %(\II(U +ady) + (v + ady)) — U(w).

Note that f(0) = f1(0) = 0. By taking the derivative of f;(«) with respect to
a, we have

file) =

n

> @ (0 + alda]i)da]s + 9 (v; + aldsi)[ds)s),

i=1

1

2

where [d,]; and [ds]; denote the i-th components of the vectors d, and ds,
respectively. From (5) and the definition of 4,

(13)  £1(0) = SVE0)T(ds + dy) = — L VU0 VEE) = ~25(0)"

By taking the derivative of f{ («) with respect to «, we have

1

2

n

D W i+ alda]i)[de]? + 0 (vi + aldy]i)[ds]?).

i=1
Since M is a P, (k) matrix and M Az = As from (7), for Az € R™ we have

(1+4k) Z Ax;As; + Z Ax;As; >0,

(14 fie)=

iEJ+ i€J_
where Jp ={ieJ : Ax;As; >0}, J_ =J— Jy. Since d,ds = % =
% and p > 0,
(15) (1 +4k) > [dalilds]i + Y [do]ilds)i > 0.

= ieJ_

For notational convenience we define
§:=0(v), op= > ldildi, o-=—> [du]ildi:.
i€J+ ieJ_

In the following we cite some lemmas in [3] for the analysis of the algorithm.
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Lemma 4.1 (Modification of Lemma 4.1 in [3]). oy < 6% and o_ < (1 +
4k)2.

Lemma 4.2 (Modification of Lemma 4.2 in [3]). Y0 ([d]? + [ds]?) < 4(1 +
2k)62, ||dy|| < 2v/1+ 2k 6, and ||ds|| < 2¢/1+ 2k 6.

Lemma 4.3 (Modification of Lemma 4.3 in [3]). f; (@) < 2(142k) 620" (vmin—
2av/1+ 2k 0).

Lemma 4.4 (Modification of Lemma 4.4 in [3]). f;(e) <0 if a is satisfying

. o 20
(16) =Y (min = 200V1528) + 9 (1min) < =

Lemma 4.5 (Modification of Lemma 4.5 in [3]). Let p : [0,00) — (0, 1] denote

the inverse function of the restriction of —3% '(t) to the interval (0,1]. Then
the largest step size « that satisfies (16) is given by

(17) +

1 1
o= ——————=( p(d) — 1+ —=19 ).
“ 25\/1—%2/{('0( ) p(( \/1+2g) ))
Lemma 4.6 (Modification of Lemma 4.6 in [3]). Let p and & be as defined in
Lemma 4.5. Then we have

1 1
a> . - .
Tr2n (ol + 1))
Define
1 1
(18) a=

T 26 0 (o((1+ o5e)0)

and we will use & as the default step size in our Algorithm. By Lemma 4.6, we
have & > &. In the following, we want to evaluate the decrease of the proximity
function value. We cite the following result in [12] without proof.

Lemma 4.7 (Lemma 12 in [12]). Let h(t) be a twice differentiable convex
function with h(0) = 0, h'(0) < 0 and let h(t) attains its (global) minimum at
t* > 0. If h"(t) is increasing for t € [0,t*], then

th'(0)

W) < — =, 0<t<t

Lemma 4.8 (Modification of Lemma 4.8 in [3]). If the step size o is such that
a < a, then f(a) < —ad?.
Theorem 4.9. Let & be a step size as defined in (18). Then we have

1 52

(19) &) s =15 V(14 252)0))”
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Proof. By Lemma 4.6 and (18), & < @. By Lemma 4.8, we get the desired
result. (|
Lemma 4.10. The right hand side in (19) is monotonically decreasing in 0.

Proof. Let t = p(ad) where a =1+ \/ﬁ Then 0 < ¢t < 1 and —¢' (p(ad)) =

2a0, i.e., %1/)/ t)=-3 "(p(ad)) = ad. Then

1 52 B 1 W (t)
1426 " (p(1+ 752)0)) — 4a(1+26) 97(1)
Define )
o) 1 Y (1)

C 4a2(1428) (1)

Since p is monotonically decreasing, ¢ is monotonically decreasing if § increases.
Hence the right hand in (19) is monotonically decreasing in ¢ if and only if the
function g(¢) is monotonically decreasing for 0 < ¢ < 1. Note that g(1) = 0
and

g () = 1 v ({20 ()2 v (1) (1)}

4a?(1 4+ 2k) P (t)? '
Since ¢ (1) = 0 and ¢ > 0, ¥'(t) < 0 for 0 < ¢ < 1. By Lemma 3.2(iii), g(t)
is monotonically decreasing for 0 < ¢ < 1. Hence the lemma is proved. (|

Lemma 4.11 (Lemma 14 in [12]). Let tg,t1,...,tx be a sequence of positive
numbers such that

tepr <t —nwt), 7, k=0,1,..., K — 1,
where kK >0 and 0 < v < 1. Then K < L%J

We define the value of ¥(v) after the p-update as ¥ and the subsequent values
in the same outer iteration as Wy, k =1, 2,.... Let K denote the total number
of inner iterations in the outer iteration. Then by the definition of K, we have

U 1>7, 0< U<

Note that ¥y < min{®¥o, ¥g}.
In the following lemma, we compute the upper bound for the total number
of inner iterations which we needed to return to the 7-neighborhood again. For

notational convenience we denote ¥(v) by ¥ and a =1+ \/ﬁ

Lemma 4.12. Let K be the total number of inner iterations in an outer iter-
ation. Then we have

1 2
K < 8(1+v2)(1+2k)q (1 + > log (1 + a\/2\110)> ve
q

where Uy denotes the value of ¥(v) after the p-update.
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Proof. Since 9" (t) < 0, ¥ (t) is a decreasing function. Using (19) and (11),
we have
1 52 - _ 1 52

142k ¥ (p(da)) = 1+2k W (

f(@) < q
m)

By Lemma 4.10 and Lemma 3.1, we have
-1

~ R q
fla) < - - [ ¥
14252 q+log<1+2a\/g>

Since ¢ (t) =1 + t%eq(%—l)’
17 q 1 2
(] = =1+q(1+aV20) <1+1og(1+a\/ﬁ)> .

q + log (1+2a\g> q
Hence we have
v 1

(20) fla) < -

20+ 26) | q(1 + aV/20) (1 + ¢ log(1 + a\/ﬁ)f

Assuming o > W > 7> 1 and usinga =1+ \/1i725 < 2, we have

1+av2¥ <14 2V20 < (1+2V2)V.

From (20), we have

£(@) € —— .
T 2020 e+ 2v9) (1+ L1og(1 +a\/ﬁ))2
Vo 1

5.
41+26) 0 4 /5) (1 + Log(1 + a\/Q\IIO))
This implies that

Up1 < U — U, k=0,1,2,...,K — 1,

where

1
B = 5, V=

4(1+ v2)(1 + 2k)q (1 + Llog(1 + a\/ﬁ))

Hence by Lemma 4.11, we have

1
5"

v

2 1
(21) K< ;—3 = 8(1 +V2)(1 + 2r)q (1 + élog(l +ay/ 2\110)) Te.

This completes the proof. O
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From (12) and (21), we have

K <8(14+V2)(1+2k)q <1+;10g(1+a\/m)) (27—}—22(@)4-9”) .

The upper bound for the total number of iterations is obtained by multiplying
the number K by the number of central path parameter updates. If the central
path parameter p has the initial value ¥ and is updated by multiplying 1 — 6,
with 0 < 6 < 1, then after at most

n 0
(22) g log ™

iterations we have nu < €. Thus the total number of iterations is bounded
above by

1 2 (27 + 22 1y 0
8(1+v2)(1+2k)q <1+q10g(1+a\/2\110)) <T+2(\1/T;')+9n> élog%-

In the following we give the main result.

Theorem 4.13. Let a P.(k) linear complementarity problem be given, where
k > 0. Assume that a strictly feasible starting point (x°,s°) is available with
U(20, 5%, u%) < 7 for some u° > 0. Then the total number of iterations for our
Algorithm is bounded above by

2 1 o
[8(1+v2)(1+26)q (1 + Llog(1 + ay/2Wg) ) (252t0n) " )T L1og 22 1.

Remark 4.14. For large-update methods with 7 = O(n) and 6 = ©(1), we have
Uy = O(n). When the parameter ¢ = log <1 + a/ 2TE2y2nrtin VEZ”Q") where a =

1+ \/ﬁ, we have O((1+2r)/nlognlog ) iteration complexity which is the
best known complexity result so far. For small-update methods with 7 = O(1)
and 0 = @(ﬁ)7 we have Wy = O(q). Hence we have O((1 + 2x)q,/qnlog 2)
iteration complexity for small-update methods which is so far the best known
result for such methods.

Example 4.15. Consider the LCP in which

w4 1))

Then M is a Pi(1/4) matriz and the solution of this problem is (x*;s*) =
(0,0,2,3)T. Numerical results of the algorithm with T =1, e = 1072, § = 0.5,
u® =1, and (2°;s°) = (0.1,0.05,1.5,2.7)T are given in the following table.
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outer iterations vy Vg U (v)

1 0.5477 | 0.5196 | 0.5847

2 0.7746 | 0.7348 | 0.1402

3 1.0914 1.0392 0.0102

4 1.5492 1.4697 | 0.4633

5 2.1909 2.0785 2.9325
Then after 5 outer iterations we have x = (0.0005,0.0016)T and s = (1.4516,
2.8990)7 .
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