DOI QR코드

DOI QR Code

NEW PRIMAL-DUAL INTERIOR POINT METHODS FOR P*(κ) LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, Gyeong-Mi (DEPARTMENT OF MULTIMEDIA ENGINEERING DONGSEO UNIVERSITY) ;
  • Kim, Min-Kyung (DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY)
  • Received : 2009.03.09
  • Published : 2010.10.31

Abstract

In this paper we propose new primal-dual interior point methods (IPMs) for $P_*(\kappa)$ linear complementarity problems (LCPs) and analyze the iteration complexity of the algorithm. New search directions and proximity measures are defined based on a class of kernel functions, $\psi(t)=\frac{t^2-1}{2}-{\int}^t_1e{^{q(\frac{1}{\xi}-1)}d{\xi}$, $q\;{\geq}\;1$. If a strictly feasible starting point is available and the parameter $q\;=\;\log\;\(1+a{\sqrt{\frac{2{\tau}+2{\sqrt{2n{\tau}}+{\theta}n}}{1-{\theta}}\)$, where $a\;=\;1\;+\;\frac{1}{\sqrt{1+2{\kappa}}}$, then new large-update primal-dual interior point algorithms have $O((1\;+\;2{\kappa})\sqrt{n}log\;n\;log\;{\frac{n}{\varepsilon}})$ iteration complexity which is the best known result for this method. For small-update methods, we have $O((1\;+\;2{\kappa})q{\sqrt{qn}}log\;{\frac{n}{\varepsilon}})$ iteration complexity.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea, Dongseo University

References

  1. Y. Q. Bai, M. El Ghami, and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM J. Optim. 15 (2004), no. 1, 101–128. https://doi.org/10.1137/S1052623403423114
  2. Y. Q. Bai, J. Guo, and C. Roos, A new kernel function yielding the best known iteration bounds for primal-dual interior-point algorithms, Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 12, 2169–2178.
  3. G. M. Cho, M. K. Kim, and Y. H. Lee, Complexity of large-update interior point algorithm for $P_\ast(\kappa)$ linear complementarity problems, Comput. Math. Appl. 53 (2007), no. 6, 948–960. https://doi.org/10.1016/j.camwa.2006.12.004
  4. T. Illes and M. Nagy, A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems, European J. Oper. Res. 181 (2007), no. 3, 1097–1111.
  5. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer Science, 538. Springer-Verlag, Berlin, 1991.
  6. M. Kojima, S. Mizuno, and A. Yoshise, A primal-dual interior point algorithm for linear programming, Progress in mathematical programming (Pacific Grove, CA, 1987), 29–47, Springer, New York, 1989.
  7. M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Math. Programming 44 (1989), no. 1, (Ser. A), 1–26. https://doi.org/10.1007/BF01587074
  8. M. Kojima, S. Mizuno, and A. Yoshise, An O($\sqrt{n}L$) iteration potential reduction algorithm for linear complementarity problems, Math. Programming 50 (1991), no. 3, (Ser. A), 331–342. https://doi.org/10.1007/BF01594942
  9. N. Megiddo, Pathways to the optimal set in linear programming, Progress in mathematical programming (Pacific Grove, CA, 1987), 131–158, Springer, New York, 1989.
  10. J. Miao, A quadratically convergent O(($\kappa$ + 1) $\sqrt{n}L$)-iteration algorithm for the $P_\ast(\kappa)$- matrix linear complementarity problem, Math. Programming 69 (1995), no. 3, Ser. A, 355–368. https://doi.org/10.1007/BF01585565
  11. J. Peng, C. Roos, and T. Terlaky, A new and efficient large-update interior-point method for linear optimization, Vychisl. Tekhnol. 6 (2001), no. 4, 61–80.
  12. J. Peng, C. Roos, and T. Terlaky Self-regular functions and new search directions for linear and semidefinite optimization, Math. Program. 93 (2002), no. 1, Ser. A, 129–171. https://doi.org/10.1007/s101070200296
  13. C. Roos, T. Terlaky, and J. Ph. Vial, Theory and Algorithms for Linear Optimization, An interior point approach. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Ltd., Chichester, 1997.
  14. U. Schafer, A linear complementarity problem with a P-matrix, SIAM Rev. 46 (2004), no. 2, 189–201.
  15. S. J. Wright, Primal-Dual Interior-Point Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.