• Title/Summary/Keyword: predictive power

Search Result 695, Processing Time 0.028 seconds

A Study on the Predictive Current Controller with the Compensation of Computation Time Delay in a Digital Control Systems (디지털 제어 시스템의 연산시간 지연을 고려한 예측전류제어기에 관한 연구)

  • Woo, Myung-Ho;Jeong, Seung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2028-2032
    • /
    • 1997
  • When a high performance current control is desired, a computation time delay of a digital control system may deteriorate the control performance of a current controller. Such a non-negligible effect can be considerable in transient state. This paper deals with the modified predictive current control that compensates the time delay effects of a conventional predictive current control. The method is closely related to a local average current control and a symmetrical PWM pattern generation. Also some theoretical approaches are presented to describe the voltage saturation boundary of the power converter. For validation, the proposed method is applied to an active power filter system. The experimental results show considerable improvement in current tracking capability.

  • PDF

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

  • Xu, Kunshan;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1608-1617
    • /
    • 2018
  • The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.

Tracking Control of Solar Power Plant Inverter using Model Predictive Control of Laguerre Functions (LMPC를 이용한 태양광발전소 인버터의 추종 제어)

  • Cho, Uk-Rae;Cha, Wang-Cheol;Park, Joung-Ho;Kim, Jae-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.106-111
    • /
    • 2014
  • Currently, the commonly used method for PWM(Pulse Width Modulation) Inverter of the Solar Power Plant. However, the limit of the developing performance to the non-linear and switch devices of the Inverter. Therefore, we propose a model predictive control techniques applied to Laguerre functions. LMPC(Laguerre functions model predictive control) reduces the number of computations made and so online implementation becomes possible where traditional MPC would have fail. In this paper, we comment on the appropriate scope and functions degree of the LMPC inverter control. The simulation results from MATLAB are also provided.

Model Parameter Correction Algorithm for Predictive Current Control of SMPMSM

  • Li, Yonggui;Wang, Shuang;Ji, Hua;Shi, Jian;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1004-1011
    • /
    • 2016
  • The inaccurate model parameters in the predictive current control of surface-mounted permanent magnet synchronous motor (SMPMSM) affect the current dynamic response and steady-state error. This paper presents a model parameter correction algorithm based on the relationship between the errors of model parameters and the static errors of dq-axis current. In this correction algorithm, the errors of inductance and flux are corrected in two steps. Resistance is ignored. First, the proportional relations between inductance and d-axis static current errors are utilized to correct the error of model inductance. Second, the flux is corrected by utilizing the proportional relations between flux and q-axis static current errors under the condition that inductance is corrected. An experimental study with a 100 W SMPMSM is performed to validate the proposed algorithm.

Hammerstein-Wiener Model based Model Predictive Control for Fuel Cell Systems (연료전지 시스템을 위한 헤머스테인-위너 모델기반의 모델예측제어)

  • Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.383-388
    • /
    • 2011
  • In this paper, we consider Hammerstein-Wiener nonlinear model for solid oxide fuel cell (SOFC). A nonlinear model predictive control (MPC) is proposed to trace the constant stack terminal power by Hydrogen flow as control input. After the stability of the closed-loop system with static output feedback controller is analysed by Lyapunov method, a nonlinear model predictive control based on the Hammerstein-Wiener model is developed to control the stack terminal power of the SOFC system. Simulation results verify the effectiveness of the proposed control method based on the Hammerstein-Wiener model for SOFC system.

Torque Tracking and Ripple Reduction of Permanent Magnet Synchronous Motor using Finite Control Set-Model Predictive Control (FCS-MPC) (영구자석 동기 전동기의 토크 제어 및 토크 리플 저감을 위한 유한 제어요소 모델 예측제어(FCS-MPC) 설계)

  • Park, Hyo-Seong;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 2014
  • This paper proposes a torque control method of permanent magnet synchronous motor, which has small torque ripple. The proposed control method is using the finite control set-model predictive control(FCS-MPC) strategy. An optimal input voltage vector minimizing a cost function is chosen among 6 passible active input voltage vectors following the FCS-MPC strategy. Then, a modulation factor for the optimal input voltage vector is computed to minimize the torque ripple. Thus, the proposed control method yields fast torque response and small torque ripple. The efficacy of the proposed method was verified through simulation and experiment.

Common-Mode Voltage and Current Harmonic Reduction for Five-Phase VSIs with Model Predictive Current Control

  • Vu, Huu-Cong;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1477-1485
    • /
    • 2019
  • This paper proposes an effective model predictive current control (MPCC) that involves using 10 virtual voltage vectors to reduce the current harmonics and common-mode voltage (CMV) for a two-level five-phase voltage source inverter (VSI). In the proposed scheme, 10 virtual voltage vectors are included to reduce the CMV and low-order current harmonics. These virtual voltage vectors are employed as the input control set for the MPCC. Among the 10 virtual voltage vectors, two are applied throughout the whole sampling period to reduce current ripples. The two selected virtual voltage vectors are based on location information of the reference voltage vector, and their duration times are calculated using a simple algorithm. This significantly reduces the computational burden. Simulation and experimental results are provided to verify the effectiveness of the proposed scheme.

Leg-By-Leg-Based Finite-Control-Set Model Predictive Control for Two-Level Voltage-Source Inverters

  • Zhang, Tao;Chen, Xiyou;Qi, Chen;Lang, Zhengying
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1162-1170
    • /
    • 2019
  • Finite-control-set model predictive control (FCS-MPC) is a promising control scheme for two-level voltage-source inverters (TL-VSIs). However, two main issues arise in the classical FCS-MPC method: an exponentially-increasing computational time and a low steady-state performance. To solve these two issues, a novel FCS-MPC method has been proposed for n-phase TL-VSIs in this paper. The basic idea of the proposed method is to carry out the FCS-MPC scheme of TL-VSIs for one leg by one leg, like a "pipeline". Based on this idea, the calculations are reduced from exponential time to linear time and its current waveforms are improved by applying more switching states per sampling period. The cases of three-phase and five-phase TL-VSIs were tested to verify the effectiveness of proposed method.

Adaptive Digital Predictive Peak Current Control Algorithm for Buck Converters

  • Zhang, Yu;Zhang, Yiming;Wang, Xuhong;Zhu, Wenhao
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.613-624
    • /
    • 2019
  • Digital current control techniques are an attractive option for DC-DC converters. In this paper, a digital predictive peak current control algorithm is presented for buck converters that allows the inductor current to track the reference current in two switching cycles. This control algorithm predicts the inductor current in a future period by sampling the input voltage, output voltage and inductor current of the current period, which overcomes the problem of hardware periodic delay. Under the premise of ensuring the stability of the system, the response speed is greatly improved. A real-time parameter identification method is also proposed to obtain the precision coefficient of the control algorithm when the inductance is changed. The combination of the two algorithms achieves adaptive tracking of the peak inductor current. The performance of the proposed algorithms is verified using simulations and experimental results. In addition, its performance is compared with that of a conventional proportional-integral (PI) algorithm.

Performance Analysis of Improved Adaptive Predictive Filter to Generate Reference Signal in Active Power Filter (능동전력필터의 기준신호발생을 위한 개선된 적응예측필터의 성능 분석)

  • Bae Byung-Yeol;Baek Seung-Taek;Han Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.592-601
    • /
    • 2004
  • The performance of active power filter depends on the inverter characteristic, the control method, and the accuracy of reference signal generator. The accuracy of reference signal generator is the most critical item to determine the performance of active power filter. This paper introduces a novel reference signal generator composed of improved adaptive predictive filter. The performance of proposed reference signal generator was verified by means of simulation with MATLAB. The application feasibility was evaluated by building and experimenting a single-phase active power filter based on the proposed reference generator, which was implemented in the DSP(digital signal processor) TMS320C31. Both simulation and experimental results confirm that the proposed reference signal generator can be utilized for the active power filter.