Browse > Article
http://dx.doi.org/10.6113/JPE.2019.19.5.1162

Leg-By-Leg-Based Finite-Control-Set Model Predictive Control for Two-Level Voltage-Source Inverters  

Zhang, Tao (School of Electrical Engineering, Dalian University of Technology)
Chen, Xiyou (School of Electrical Engineering, Dalian University of Technology)
Qi, Chen (School of Electrical Engineering, Dalian University of Technology)
Lang, Zhengying (School of Electrical Engineering, Dalian University of Technology)
Publication Information
Journal of Power Electronics / v.19, no.5, 2019 , pp. 1162-1170 More about this Journal
Abstract
Finite-control-set model predictive control (FCS-MPC) is a promising control scheme for two-level voltage-source inverters (TL-VSIs). However, two main issues arise in the classical FCS-MPC method: an exponentially-increasing computational time and a low steady-state performance. To solve these two issues, a novel FCS-MPC method has been proposed for n-phase TL-VSIs in this paper. The basic idea of the proposed method is to carry out the FCS-MPC scheme of TL-VSIs for one leg by one leg, like a "pipeline". Based on this idea, the calculations are reduced from exponential time to linear time and its current waveforms are improved by applying more switching states per sampling period. The cases of three-phase and five-phase TL-VSIs were tested to verify the effectiveness of proposed method.
Keywords
Current control; Model predictive control; Two-level voltage-source inverter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Casadei, D. Dujic, E. Levi, G. Serra, A. Tani, and L. Zarri, “General modulation strategy for seven-phase inverters with independent control of multiple voltage space vectors,” IEEE Trans. Ind. Electron., Vol. 55, No. 5, pp. 1921-1932, May 2008.   DOI
2 D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, IEEE Press, 2003.
3 N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics - Converters, Applications and Design, 3rd ed., Media Enhanced Edition, Wiley, 2003.
4 S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, “Model predictive control - A simple and powerful method to control power converters,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1826-1838, Jun. 2009.   DOI
5 J. Holtz, “Advanced pwm and predictive control-an overview,” IEEE Trans. Ind. Electron., Vol. 63, No. 6, pp. 3837-3844, Jun. 2016.   DOI
6 S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model predictive control for power converters and drives: advances and trends,” IEEE Trans. Ind. Electron., Vol. 64, No. 2, pp. 935-947, Feb. 2017.   DOI
7 C. Xia, T. Liu, T. Shi, and Z. Song, “A simplified finitecontrol-set model-predictive control for power converters,” IEEE Trans. Ind. Informat., Vol. 10, No. 2, pp. 991-1002, May. 2014.   DOI
8 W. Xie, X. Wang, F. Wang, W. Xu, R. M. Kennel, D. Gerling, and R. D. Lorenz, “Finite-control-set model predictive torque control with a deadbeat solution for PMSM Drives,” IEEE Trans. Ind. Electron., Vol. 62, No. 9, pp. 5402-5410, Sep. 2015.   DOI
9 Z. Zhang, C. M. Hackl, and R. Kennel, “Computationally Efficient DMPC for three-level NPC back-to-back convertersin wind turbine systems with PMSG,” IEEE Trans. Power Electron., Vol. 32, No. 10, pp. 8018-8034, Oct. 2017.   DOI
10 X. Wang and D. Sun, “Three-vector based low-complexity model predictive direct power control strategy for doubly fed induction generator,” IEEE Trans. Power Electron., Vol. 32, No. 1, pp. 773-782, Jan. 2017.   DOI
11 W. Song, J. Ma, L. Zhou, and X. Feng, “Deadbeat predictive power control of single-phase three-level neutral-pointclamped converters using space-vector modulation for electric railway traction,” IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 721-732, Jan. 2016.   DOI
12 C. Cheng, H. Nian, X. Wang, and D. Sun, “Deadbeat predictive direct power control of voltage source inverters with optimised switching patterns,” IET Power Electron., Vol. 10, No. 12, pp. 1438-1451, Dec. 2017.   DOI
13 C. Qi, X. Chen, P. Tu, and P. Wang, “Deadbeat control for a single-phase cascaded H-bridge rectifier with voltage balancing modulation,” IET Power Electron., Vol. 11, No. 3, pp. 610-617, Mar. 2018.   DOI
14 A. Dekka, B. Wu, V. Yaramasu, and N. R. Zargari, “Dualstage model predictive control with improved harmonic performance for modular multilevel converter,” IEEE Trans. Ind. Electron., Vol. 63, No. 10, pp. 6010-6019, Oct. 2016.   DOI
15 T. Geyer, “Computationally efficient model predictive direct torque control,” IEEE Trans. Power Electron., Vol. 26, No. 10, pp. 2804-2816, Oct. 2011.   DOI
16 F. Barrero, J. Prieto, E. Levi, R. Gregor, S. Toral, M. J. Duran, and M. Jones, “An enhanced predictive current control method for asymmetrical six-phase motor drives,” IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 3242-3252, Aug. 2011.   DOI
17 F. Barrero, M. R. Arahal, R. Gregor, S. Toral, and M. J. Duran, “A proof of concept study of predictive current control for vsi-driven asymmetrical dual three-phase ac machines,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1937-1954, Jun. 2009.   DOI
18 F. Barrero, M. R. Arahal, R. Gregor, S. Toral, and M. J. Duran, “One-step modulation predictive current control method for the asymmetrical dual three-phase induction machine,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1974-1983, Jun. 2009.   DOI
19 J. I. Leon, S. Kouro, L. G. Franquelo, J. Rodriguez, and B. Wu, “The essential role and the continuous evolution of modulation techniques for voltage-source inverters in the past, present, and future power electronics,” IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp. 2688-2701, May 2016.   DOI
20 M. J. Duran, J. Prieto, F. Barrero, and S. Toral, “Predictive current control of dual three-phase drives using restrained search techniques,” IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 3253-3263, Aug. 2011.   DOI
21 M. J. Duran, J. A. Riveros, F. Barrero, H. Guzman, and J. Prieto, "Reduction of common-mode voltage in five-phase induction motor drives using predictive control techniques," IEEE Trans. Ind. Applicat., Vol. 48, No. 6, pp.2059-2067, Nov./Dec. 2012.   DOI
22 C. Qi, X. Chen, P. Tu, and P. Wang, "Cell-by-cell-based finite-control-set model predictive control for a singlephase cascaded h-bridge rectifier," IEEE Trans. Power Electron., Vol. 33, No. 2, pp. 1654-1665, Feb. 2018.   DOI
23 J. A. Riveros, F. Barrero, E. Levi, M. J. Duran, S. Toral, and M. Jones, “Variable-speed five-phase induction motor drive based on predictive torque control,” IEEE Trans. Ind. Electron., Vol. 60, No. 8, pp. 2957-2968, Aug. 2013.   DOI
24 C. S. Lim, E. Levi, M. Jones, N. A. Rahim, and W. P. Hew, “FCS-MPC-based current control of a five-phase induction motor and its comparison with pi-pwm control,” IEEE Trans. Ind. Electron., Vol. 61, No. 1, pp. 149-163, Jan. 2014.   DOI
25 M. Cheng, F. Yu, K. T. Chau, and W. Hua, “Dynamic performance evaluation of a nine-phase flux-switching permanent-magnet motor drive with model predictive control,” IEEE Trans. Ind. Electron., Vol. 63, No. 7, pp. 4539-4549, Jul. 2016.   DOI
26 Y. Zhao and T. A. Lipo, "Space vector PWM control of dual three-phase induction machine using vector space decomposition," IEEE Trans. Ind. Appl., Vol. 31, No. 5, pp.1100-1109, Sep./Oct. 1995.   DOI