• Title/Summary/Keyword: predictive model

Search Result 2,200, Processing Time 0.032 seconds

Model Predictive Control for Input Constrained Systems with Time-varying Delay (시변 시간지연을 가지는 입력제한 시스템의 모델예측제어)

  • Lee, S.M.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1019-1023
    • /
    • 2012
  • This paper considers a model predictive control problem of discrete-time constrained systems with time-varying delay. For this problem, a delay dependent state feedback control approach is used to achieve asymptotic stabilization of systems with input constraints. Based on Lyapunov stability theory, a new stability condition is obtained via linear matrix inequality formulation to find cost monotonicity condition of the model predictive control algorithm which guarantee the closed loop stability. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

Performance Improvement of Model Predictive Control Using Control Error Compensation for Power Electronic Converters Based on the Lyapunov Function

  • Du, Guiping;Liu, Zhifei;Du, Fada;Li, Jiajian
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.983-990
    • /
    • 2017
  • This paper proposes a model predictive control based on the discrete Lyapunov function to improve the performance of power electronic converters. The proposed control technique, based on the finite control set model predictive control (FCS-MPC), defines a cost function for the control law which is determined under the Lyapunov stability theorem with a control error compensation. The steady state and dynamic performance of the proposed control strategy has been tested under a single phase AC/DC voltage source rectifier (S-VSR). Experimental results demonstrate that the proposed control strategy not only offers global stability and good robustness but also leads to a high quality sinusoidal current with a reasonably low total harmonic distortion (THD) and a fast dynamic response under linear loads.

Distributed Model Predictive Formation Control of UGV Swarm Guaranteeing Collision Avoidance (충돌 회피가 보장된 분산화된 군집 UGV의 모델 예측 포메이션 제어)

  • Park, Seong-Chang;Lee, Seung-Mok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.115-121
    • /
    • 2022
  • This paper proposes a distributed model predictive formation control algorithm for a group of unmanned ground vehicles (UGVs) with guaranteeing collision avoidance between UGVs. Generally, the model predictive control based formation control has a disadvantage in that it takes a long time to compute control inputs when considering collision avoidance between UGVs. In this paper, in order to overcome this problem, the formation control algorithm is implemented in a distributed manner so that it could be individually controlled. Also, a collision-avoidance method considering real-time is proposed. The proposed formation control algorithm is implemented based on robot operating system (ROS), open source-based middleware. Through the various simulation tests, it is confirmed that the formation control of five UGVs is successfully performed while avoiding collisions between UGVs.

Multivariable Nonlinear Model Predictive Control of a Continuous Styrene Polymerization Reactor

  • Na, Sang-Seop;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.45-48
    • /
    • 1999
  • Model predictive control algorithm requires a relevant model of the system to be controlled. Unfortunately, the first principle model describing a polymerization reaction system has a large number of parameters to be estimated. Thus there is a need for the identification and control of a polymerization reactor system by using available input-output data. In this work, the polynomial auto-regressive moving average (ARMA) models are employed as the input-output model and combined into the nonlinear model predictive control algorithm based on the successive linearization method. Simulations are conducted to identify the continuous styrene polymerization reactor system. The input variables are the jacket inlet temperature and the feed flow rate whereas the output variables are the monomer conversion and the weight-average molecular weight. The polynomial ARMA models obtained by the system identification are used to control the monomer conversion and the weight-average molecular weight in a continuous styrene polymerization reactor It is demonstrated that the nonlinear model predictive controller based on the polynomial ARMA model tracks the step changes in the setpoint satisfactorily. In conclusion, the polynomial ARMA model is proven effective in controlling the continuous styrene polymerization reactor.

  • PDF

Adaptive Nonlinear Constrained Predictive Control of pH Neutralization in Fed-batch Bio-reactor

  • Zhe, Xu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.90-95
    • /
    • 2003
  • In this paper, an Adaptive Nonlinear Constrained Model Predictive Control (ANCMPC) is presented for a pH control in a fed-batch bio-reactor. The pH model is represented with Hammerstein Model. The static nonlinear part of Hammerstein model is described with the static pH model, and the dynamic linear part of the Hammerstein model is described with the CARIMA model. The parameters of the CARIMA model is estimated on-line with the input and output measurements of the system using a recursive least squares type of identi�cation algorithm. The e�ectiveness of the proposed controller is shown through simulations.

  • PDF

An Improved Predictive Control of an Induction Machine fed by a Matrix Converter for Torque Ripple Reduction (토크 리플 저감을 위한 매트릭스 컨버터 구동 유도 전동기의 향상된 예측 제어 기법)

  • Lee, Eunsil;Choi, Woo Jin;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.662-668
    • /
    • 2015
  • This paper presents an improved predictive control of an induction machine fed by a matrix converter using N-switching vectors as the control action during a complete sampling period of the controller. The conventional model predictive control scheme based matrix converter uses a single switching vector over the same period which introduces high torque ripple. The proposed switching scheme for a matrix converter based model predictive control of an induction machine drive selects the appropriate switching vectors for control of electromagnetic torque with small variations of the stator flux. The proposed method can reduce the ripple of the electrical variables by selecting the switching state as well as the method used in the space vector modulation techniques. Simulation results are presented to verify the effectiveness of the improved predictive control strategy for induction machine fed by a matrix converter.

Control of Grade Change Operations in Paper Plants Using Model Predictive Control Method (모델예측제어 기법을 이용한 제지공정에서의 지종교체 제어)

  • Kim, Do-Hoon;Yeo, Young-Gu;Park, Si-Han;Kang, Hong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.4
    • /
    • pp.48-56
    • /
    • 2003
  • In this work an integrated model for paper plants combining wet-end and dry section is developed and a model predictive control scheme based on the plant model is proposed. Closed-loop process identification method is employed to produce a state-space model. Thick stock, filler flow, machine speed and steam pressure are selected as input variables and basis weight, ash content and moisture content are considered as output variables. The desired output trajectory is constructed in the form of 1st-order dynamics. Results of simulations for control of grade change operations are compared with plant operation data collected during the grade change operations under the same conditions as in simulations. From the comparison, we can see that the proposed model predictive control scheme reduces the grade change time and achieves stable steady-state.

The Management Strategies of National Health Screening Patients in Health Examination center (건강검진센터의 국민건강보험 검진환자 관리방안)

  • Kim, Yoo-Mi;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.397-407
    • /
    • 2012
  • This study aims to develop the methods for effective managing national health screening patients in the health examination center using digital data from national health screening in Dae-Jeon health examination center. To achieve this, we collected about national health screening for 10 years from 2002 to 2011 in Dae-Jeon health examination center and developed re-examination predictive model, private examination predictive model and stomach cancer examination predictive model for national health screening patients by using this data. According to the predictive model results, age, residence, group or individual health examination and the previous number of national health screening were statistically associated with re-examination, private examination, stomach cancer examination. We came up with a plan for health examination center system based on the predictive model and logic in Dae-Jeon. Customized service based on patient management system for national health screening will contribute to efficiency in health examination center.

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

Block-wise Adaptive Predictive PLS using Block-wise Data Extraction (데이터 추출 과정을 적용한 Block-wise Adaptive Predictive PLS)

  • Kim Sung-Young;Chung Chang-Bock;Choi Soo-Hyoung;Lee Bom-Sock
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.706-712
    • /
    • 2006
  • Recursive Partial Least Squares(RPLS) method has been used for processing the on-line available multivariate chemical process data and modeling adaptive prediction model for process changes. However, RPLS method is unstable in PLS model updating because RPLS method updates PLS model by merging past PLS model and new data. In this study, Adaptive Predictive Partial Least Squres(APPLS) method is suggested for more sensitive adaptation to process changes. By expanding APPLS method, block-wise Adaptive Predictive Partial Least Squares(block-wise APPLS) method is suggested for a lager scale data of chemical processes. APPLS method has been applied to predict the reactor properties and the product quality of a direct esterification reactor for polyethylene terephthalate(PTT), and block-wise APPLS method has been applied to predict the cetane number using NIR Diesel Spectra data. APPLS and block-wise APPLS methods show better prediction and updating performance than RPLS method.