• Title/Summary/Keyword: precipitation frequency

Search Result 418, Processing Time 0.021 seconds

Derivation of Drought Severity-Duration-Frequency Curves Using Drought Frequency Analysis (가뭄빈도해석을 통한 가뭄심도-지속시간-생기빈도 곡선의 유도)

  • Lee, Joo-Heon;Kim, Chang-Joo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.889-902
    • /
    • 2011
  • In this study, frequency analysis using drought index had implemented for the derivation of drought severity-duration-frequency (SDF) curves to enable quantitative evaluations of past historical droughts having been occurred in Korean Peninsular. Seoul, Daejeon, Daegu, Gwangju, and Busan weather stations were selected and precipitation data during 1974~2010 (37 years) was used for the calculation of Standardized Precipitation Index (SPI) and frequency analysis. Based on the results of goodness of fit test on the probability distribution, Generalized Extreme Value (GEV) was selected as most suitable probability distribution for the drought frequency analysis using SPI. This study can suggest return periods for historical major drought events by using newrly derived SDF curves for each stations. In case of 1994~1995 droughts which had focused on southern part of Korea. SDF curves of Gwangju weather station showed 50~100 years of return period and Busan station showed 100~200 years of return period. Besides, in case of 1988~1989 droughts, SDF of Seoul weather station were appeared as having return periods of 300 years.

Characteristics of Recent Occurrence Frequency of Asian dust over the Source Regions - Analysis of the dust Occurrences since 2002 (최근의 황사 발원지에서의 먼지 발생 특성-2002년 이후 먼지발생 경향 분석)

  • Lee, Jong-Jae;Kim, Cheol-Hee
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.493-506
    • /
    • 2008
  • In order to examine the variational features of Asian dust outbreak in recent years, observed WMO synop data were employed for the period from 1996 to 2007. We first divided Asian dust source regions into four subregions; 1) Taklamakan, 2) Gobi, 3) Inner Mongolia-Manchuria and 4) Loess, and the meteorogical variables such as wind speed, precipitation and threshold wind speed observed during the Asian dust outbreak period were compared with those during non-Asian dust period. The results showed that temporal variation of occurrence frequency of dust outbreak had a strong positive correlation with the frequency of strong wind speed and low precipitation in each of the 4 source regions. Spatial distributions of frequency of dust occurrence after 2002 showed increasing trend in Gobi and Inner Mongolia-Manchuria but decreasing trend in Loess region. This is showing a shift in main source region toward Northwest, especially since 2003.

The Characteristics of the Anomaly Level and Variability of the Monthly Precipitation in Kyeongnam, Korea (경남지방의 월강수량의 변동율과 Anomaly Level의 출현특성)

  • 박종길;이부용
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.179-191
    • /
    • 1993
  • This paper aims to know the characteristics of occurrence of the anomaly level and variability of the monthly precipitation in Kyeongnam, Korea. For this study, it was investigated 주e distribution of the annual and cont비y mean precipitation, the precipitation variability and its annual change, and the characteristics of occurrence of the anomaly level in Kyeongnam area the results were summarized as follows : 1) she mean of annual total precipitation averaged over Kyeongnam area is 1433.3mm. I'he spatial distribution of the annual total precipitation shows that in Kyeongnam area, the high rainfall area locates in the southwest area and south coast and the low rainfall area in an inland area. 2) Monthly mean precipitation in llyeongnam area was the highest in July(266.4mm) 각lowed by August(238.0mm), June(210.2mm) in descending order. In summer season, rainfall was concentrated and accounted for 49.9 percent of the annual total precipitation. Because convergence of the warm and humid southwest current which was influenced by Changma and typhoon took place well in this area. 3) The patterns of annual change of precipitaion variability can be divided into two types; One is a coast type and the other an inland type. The variability of precipitation generally appears low in spring and summer season and high in autumn and winter season. This is in accord with the large and small of precipitation. 4) The high frequency of anomaly level was N( Normal)-level and the next was LN( Low Informal) -level and 25(Extremely Subnormal)-level was not appeared in all stations. The occurrence frequency of N level was high in high rainfall area and distinguish성 in spring and summer season but the low rainfall area was not. hey Words : anomaly level, variability, precipitation, coast type, inland type.

  • PDF

Analysis of Spatial-temporal Variability and Trends of Extreme Precipitation Indices over Chungcheong Province, South Korea (충청지역 극한강우지수의 시공간적 경향과 변동성 분석)

  • Bashir, Adelodun;Golden, Odey;Seulgi, Lee;Kyung Sook, Choi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.101-112
    • /
    • 2022
  • Extreme precipitation events have recently become a leading cause of disasters. Thus, investigating the variability and trends of extreme precipitation is crucial to mitigate the increasing impact of such events. Spatial distribution and temporal trends in annual precipitation and four extreme precipitation indices of duration (CWD), frequency (R10 mm), intensity (Rx1day), and percentile-based threshold (R95pTOT) were analyzed using the daily precipitation data of 10 observation stations in Chungcheong province during 1974-2020. The precipitation at all observation stations, except the Boryeong station, showed nonsignificant increasing trends at 95% confidence level (CL) and increasing magnitudes from the west to east regions. The high variability in mean annual precipitation was more pronounced around the northeast and northwest regions. Similarly, there were moderate to high patterns in extreme precipitation indices around the northeast region. However, the precipitation indices of duration and frequency consistently increased from the west to east regions, while those of intensity and percentile-based threshold increased from the south to east regions. Nonsignificant increasing trends dominated in CWD, R10 mm, and Rx1day at all stations, except for R10 mm at Boeun station and Rx1day at Cheongju and Jecheon stations, which showed a significantly increasing trend. The spatial distribution of trend magnitude shows that R10 mm increased from the west to east regions. Furthermore, variations in precipitation were very strongly correlated (99% CL) with R10 mm, Rx1day, and R95pTOT at all stations, except with wR10 mm at Cheongju station, which was strongly correlated with a 95% CL.

Estimating Exploitable Groundwater as a Function of Precipitation Using a Distributed Hydrologic Model and Frequency Analysis (분포형 수문모형과 빈도해석을 이용한 강수량별 지하수 개발가능량 산정)

  • Kim, Minsoo;Jeong, Gyocheol;Lee, Jeong Eun;Kim, Min-Gyu
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.253-268
    • /
    • 2020
  • In this study, recharge rates are estimated using SWAT-K (a distributed hydrological model). The validity of the estimated recharge rates were evaluated by employing the baseflow separation method based on observed hydrological data. The exploitable groundwater is typically determined as the 10-year drought frequency recharge rate that is calculated by average recharge ratio multiplied by 10-year drought frequency precipitation. In practice, however, recharge rates typically decrease in line with precipitation; therefore, exploitable groundwater could be overestimated when average recharge rates are used without considering precipitation. To resolve this overestimation, exploitable groundwater was calculated by re-estimating recharge rates that consider precipitation intensity. By applying this method to the Uiwang, Gwacheon, and Seongnam sub-basins, the exploitable groundwater decreased by 55.5~77.6%, compared with recharge rates obtained using the existing method.

Downscaling Technique of Monthly GCM Using Daily Precipitation Generator (일 강수발생모형을 이용한 월 단위 GCM의 축소기법에 관한 연구)

  • Kyoung, Min Soo;Lee, Jung Ki;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.441-452
    • /
    • 2009
  • This paper describes the evaluation technique for climate change effect on daily precipitation frequency using daily precipitation generator that can use outputs of the climate model offered by IPCC DDC. Seoul station of KMA was selected as a study site. This study developed daily precipitation generation model based on two-state markov chain model which have transition probability, scale parameter, and shape parameter of Gamma-2 distribution. Each parameters were estimated from regression analysis between mentioned parameters and monthly total precipitation. Then the regression equations were applied for computing 4 parameters equal to monthly total precipitation downscaled by K-NN to generate daily precipitation considering climate change. A2 scenario of the BCM2 model was projected based on 20c3m(20th Century climate) scenario and difference of daily rainfall frequency was added to the observed rainfall frequency. Gumbel distribution function was used as a probability density function and parameters were estimated using probability weighted moments method for frequency analysis. As a result, there is a small decrease in 2020s and rainfall frequencies of 2050s, 2080s are little bit increased.

A Study on Target Standardized Precipitation Index in Korea (한반도 목표 표준강수지수(SPI) 산정에 관한 연구)

  • Kim, Min-Seok;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1117-1123
    • /
    • 2014
  • Water is a necessary condition of plants, animals and human. The state of the water shortage, that drought is globally one of the most feared disasters. This study was calculated target standardized precipitation index with unit of region for judgment and preparation of drought in consideration of the regional characteristics. First of all, Standardized Precipitation Index (3) were calculated by monthly rainfall data from rainfall data more than 30 years of 88 stations. Parametric frequency and nonparametric frequency using boundary kernel density function were analysed using annual minimum data that were extracted from calculated SPI (3). Also, Target return period sets up 30 year and target SPI analysed unit of region using thiessen by result of nonparametric frequency. Analyzed result, Drought was entirely different from severity and frequency by region. This study results will contribute to a national water resources plan and disaster prevention measures with data foundation for judgment and preparation of drought in korea.

Quantifying the 2022 Extreme Drought Using Global Grid-Based Satellite Rainfall Products (전지구 강수관측위성 기반 격자형 강우자료를 활용한 2022년 국내 가뭄 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Lee, Kwang-Ya;Do, Jong-Won;Isaya Kisekka
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.41-50
    • /
    • 2024
  • Precipitation is an important component of the hydrological cycle and a key input parameter for many applications in hydrology, climatology, meteorology, and weather forecasting research. Grid-based satellite rainfall products with wide spatial coverage and easy accessibility are well recognized as a supplement to ground-based observations for various hydrological applications. The error properties of satellite rainfall products vary as a function of rainfall intensity, climate region, altitude, and land surface conditions. Therefore, this study aims to evaluate the commonly used new global grid-based satellite rainfall product, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), using data collected at different spatial and temporal scales. Additionally, in this study, grid-based CHIRPS satellite precipitation data were used to evaluate the 2022 extreme drought. CHIRPS provides high-resolution precipitation data at 5 km and offers reliable global data through the correction of ground-based observations. A frequency analysis was performed to determine the precipitation deficit in 2022. As a result of comparing droughts in 2015, 2017, and 2022, it was found that May 2022 had a drought frequency of more than 500 years. The 1-month SPI in May 2022 indicated a severe drought with an average value of -1.8, while the 3-month SPI showed a moderate drought with an average value of 0.6. The extreme drought experienced in South Korea in 2022 was evident in the 1-month SPI. Both CHIRPS precipitation data and observations from weather stations depicted similar trends. Based on these results, it is concluded that CHIRPS can be used as fundamental data for drought evaluation and monitoring in unmeasured areas of precipitation.

Analysis of Drought Characteristics in Gyeongbuk Based on the Duration of Standard Precipitation Index

  • Ahn, Seung Seop;Park, Ki bum;Yim, Dong Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.863-872
    • /
    • 2019
  • Using the Standard Precipitation Index (SPI), this study analyzed the drought characteristics of ten weather stations in Gyeongbuk, South Korea, that precipitation data over a period of 30 years. For the number of months that had a SPI of -1.0 or less, the drought occurrence index was calculated and a maximum shortage months, resilience and vulnerability in each weather station were analyzed. According to the analysis, in terms of vulnerability, the weather stations with acute short-term drought were Andong, Bonghwa, Moongyeong, and Gumi. The weather stations with acute medium-term drought were Daegu and Uljin. Finally the weather stations with acute long-term drought were Pohang, Youngdeok, and Youngju. In terms of severe drought frequency, the stations with relatively high frequency of mid-term droughts were Andong, Bonghwa, Daegu, Uiseong, Uljin, and Youngju. Gumi station had high frequency of short-term droughts. Pohang station had severe short-term ad long-term droughts. Youngdeok had severe droughts during all the terms. Based on the analysis results, it is inferred that the size of the drought should be evaluated depending on how serious vulnerability, resilience, and drought index are. Through proper evaluation of drought, it is possible to take systematic measures for the duration of the drought.

A Synoptic Climatological Study on the Distribution of Winter Precipitation in South Korea (韓國의 冬季 降水 分布에 關한 綜觀氣候學的 硏究)

  • Park, Byong-Ik;Yoon, Suk-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.1
    • /
    • pp.31-46
    • /
    • 1997
  • The purposes of this paper are to classify the spatial distribution types of precipitation by making daily isohyetal maps based on the winter daily precipitation and to analyse both the distributional characteristics of precipitation during the winter in South Korea and the synoptic characteristics related to them. Also, the correspondence between the spatial distribution types of precipitation and the synoptic characteristics occuring among them is examined with regards to pressure patterns and then precipitation distribution types. In addition, the characteristics of the pressure fields and temperature fields in 850hPa, 700hPa, and 500hPa level were analysed to find out the difference between the Ullung-do type and the Ullung-do${\cdot}$Honam type, which have similar characteristics on the surface weather map. As a result, the Ullung-do area showed a high frequency of occurrence regardless of precipitation classes, the East Coast area revealed a higher frequency of occurrence in over the 5mm section, while the Honam area had high frequency of occurrence in the 1~5mm section. There are twelve distribution types of precipitation during the winter. These distribution types show clear changes according to the season. The difference in precipitation distribution between the Ullung-do type and the Ullung-do${\cdot}$Honam type has a close relationship with the aspect of the upper cold air advection rather than the direction and the speed of the wind.

  • PDF