DOI QR코드

DOI QR Code

Downscaling Technique of Monthly GCM Using Daily Precipitation Generator

일 강수발생모형을 이용한 월 단위 GCM의 축소기법에 관한 연구

  • 경민수 (인하대학교 사회기반시스템공학부) ;
  • 이정기 (인하대학교 사회기반시스템공학부) ;
  • 김형수 (인하대학교 사회기반시스템공학부)
  • Received : 2009.06.01
  • Accepted : 2009.09.02
  • Published : 2009.09.30

Abstract

This paper describes the evaluation technique for climate change effect on daily precipitation frequency using daily precipitation generator that can use outputs of the climate model offered by IPCC DDC. Seoul station of KMA was selected as a study site. This study developed daily precipitation generation model based on two-state markov chain model which have transition probability, scale parameter, and shape parameter of Gamma-2 distribution. Each parameters were estimated from regression analysis between mentioned parameters and monthly total precipitation. Then the regression equations were applied for computing 4 parameters equal to monthly total precipitation downscaled by K-NN to generate daily precipitation considering climate change. A2 scenario of the BCM2 model was projected based on 20c3m(20th Century climate) scenario and difference of daily rainfall frequency was added to the observed rainfall frequency. Gumbel distribution function was used as a probability density function and parameters were estimated using probability weighted moments method for frequency analysis. As a result, there is a small decrease in 2020s and rainfall frequencies of 2050s, 2080s are little bit increased.

본 연구에서는 IPCC DDC를 통해서 제공되는 월 단위 기후모형의 결과를 바탕으로 일 강수를 발생할 수 있는 일 강수 발생모형을 제안하고, 이를 이용해 기후변화가 일 강수빈도에 미치는 영향평가 기법을 기상청산하 서울지점을 대상으로 제시하고자 하였다. 본 연구에서 제안하는 일 강수발생모형은 2 state 마코브 체인 모형을 기반으로 개발되었으며, 강수를 발생시키는데 필요한 천이확률과 강수의 양을 결정짓는 Gamma-2 분포의 규모매개변수 및 형상매개변수는 회귀분석에 의한 월총강수량과의 관계를 통해서 산정되었다. 제시된 회귀분석 결과에 기후모형으로부터 K-NN방법에 의해서 서울지점으로 축소된 월 총강수량을 적용하여 기후변화가 고려된 일 강수를 발생시켰다. 기후모형으로는 BCM2모형을 사용하였으며, 20c3m 시나리오를 기준시나리오로 하여 A2 시나리오에서의 일 강우빈도의 차이를 산정하여 관측된 일 강우 빈도에 적용하였다. 빈도해석을 위한 분포형으로는 Gumbel분포를 선정하였으며, 매개변수 추정을 위하여 확률가중모멘트 방법을 적용하였다. 연구결과 미래 서울지역의 빈도별 일 강수량은 2020s에는 다소 감소, 2050s, 2080s 에는 다소 증가하는 것으로 예상 되었다.

Keywords

References

  1. 경민수, 이용원, 김형수, 김병식(2009) 기후변화가 한반도의 월 기온 및 강수에 미치는 영향 평가; AR4 SRES A2 시나리오를 기반으로, 대한토목학회논문집, 대한토목학회, 제29권 제2B호, pp. 267-276.
  2. 권현한, 김병식(2009) 비정상성 Markov Chain Model을 이용한 통계학적 Downscaling 기법개발, 한국수자원학회논문집, 한국수자원학회, 제42권 제3호, pp. 213-225. https://doi.org/10.3741/JKWRA.2009.42.3.213
  3. 김병식, 김보경, 경민수, 김형수(2008) 기후변화가 극한강우와 ID-F 분석에 미치는 영향 평가. 한국수자원학회논문집, 한국수자원학회, 제41권 제4호, pp. 379-394.
  4. Bardossy, A., Bogardi, I., and Matyasovszky, I. (2005) Fuzzy rulebased downscaling of precipitation. Theoretical and Applied Climatology, Vol. 82, No. 1-2, pp. 119-129. https://doi.org/10.1007/s00704-004-0121-0
  5. Bardossy, A., Stehlík, J., and Caspary, H.J. (2002) Automated objective classification of daily circulation patterns for precipitation and temperature downscaling based on optimized fuzzy rules. Climate Research, Vol. 23, No. 1, pp. 11-2. https://doi.org/10.3354/cr023011
  6. Conway, D., Wilby, R.L., and Jones, P.D. (1996) Precipitation and air flow indices over the british isles. Climate Research, Vol. 7, No. 2, pp. 169-183. https://doi.org/10.3354/cr007169
  7. Dubrovsky, M., Svoboda, M.D., Tranka, M., Hayes, M.J., Wilhite, D.A., Zalud, Z., and Hlavinka, P. (2009) Application of relative drought indice in assessing climate-change impacts on drought conditions in Czechia. Theoretical and Applied Climatology, Vol. 96, No. 1-2, pp. 155-171. https://doi.org/10.1007/s00704-008-0020-x
  8. Durman, C.F., Gregory, J.M., Hassell, D.C., Jones, R.G., and Murphy, J.M. (2001) A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Quarterly Journal of the Royal Meteorological Society, Royal Meteorological Society, Vol. 127, No. 573, pp. 1005-1015. https://doi.org/10.1002/qj.49712757316
  9. Ekstrom, M., Fowler, H.J., Kilsby, C.G., and Jones, P.D. (2005) New estimation of future change in extreme rainfall across the UK using regional climate model integrations. 2. Future estimates and use in impact studies. Journal of hydrology, Vol. 300, No. 1-4, pp. 234-251. https://doi.org/10.1016/j.jhydrol.2004.06.019
  10. Fowler, H.J., Ekström, M., Kilsby, C.G., and Jones, P.D. (2005a) New estimation of future change in extreme rainfall across the UK using regional climate model integrations. 1. Assessment of control integrations. Journal of hydrology, Vol. 300, No. 1-4, pp. 212-233. https://doi.org/10.1016/j.jhydrol.2004.06.017
  11. Fowler, H.J. and Kilsby, C.G, O’Connell, P.E. (2000) A stochastic rainfall model for the assessment of regional water resource systems under changed climatic conditions. Hydrology and Earth System Sciences, Vol. 4, No. 2, pp. 261-280.
  12. Fowler, H.J., Kilsby, C.G, O’Connell, P.E., and Burton, A. (2005b) A weathertype conditioned multi-site stochastic rainfall model for generation of scenarios of climatic variability and change. Journal of Hydrology, Vol. 308, No. 1-4, pp. 50-66. https://doi.org/10.1016/j.jhydrol.2004.10.021
  13. Fowler, H.J., Blenkinsop, S., and Tebaldi, C. (2007a) Linking climate change modelling to impacts studies : recent advances in downscaling techniques for hydrological modeling, International journal of climatology, Vol. 27, No. 12, pp. 1547-1578. https://doi.org/10.1002/joc.1556
  14. Fowler, H.J., Kilsby, C.G., and Stunell, J. (2007b) Modeling the impacts of projected future climate change on water resources in north-west England. Hydrologic & Earth System Sciences, EGU, Vol. 11, No. 3, pp. 1115-1126. https://doi.org/10.5194/hess-11-1115-2007
  15. Frei, C., Schöll, R., Fukutome, S., Schmidli, J., and Vidale P.L. (2006) Future change of precipitation extremes in Europe: an intercomparison of scenarios from regional climate models. Journal of Geophysical Research-Atmospheres, Vol. 111.
  16. Giorgi, F. and Hewitson, B.C. (2001) Regional climate informationevaluation and projections. In Climate Change 2001, The Scientific Basis. C, Houghton JT, Ding Y, Griggs DJ, Noguer M, vander Linden PJ, Dia X, Maskell K, Johnson CA (eds). Cambridge University Press: Cambridge.
  17. Goodess, C.M. and Palutikof, J. (1998) Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. International Journal of Climatology, Vol. 18, No. 10, pp. 1051-1083. https://doi.org/10.1002/(SICI)1097-0088(199808)18:10<1051::AID-JOC304>3.0.CO;2-1
  18. Hanssen-Bauer, I. and Forland, E.J. (1998) Long-term trends in precipitation and tempuer ure in the Norwegian Arcong-: can they be explained by changes in atmospherng-circulation patterns?. Climate Research, Vol. 10, No. pp. 143-153. https://doi.org/10.3354/cr010143
  19. Hashino, T., Bradley, A.A., and Schwartz, S.S. (2007) Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrology and Earth System Science, EGU, Vol. 11, pp. 939-950. https://doi.org/10.5194/hess-11-939-2007
  20. Hellstrom C., Chen D., Achberger C., and Raisanen J. (2001) Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation. Climate Research Vol. 19, No. 1, pp. 45-55. https://doi.org/10.3354/cr019045
  21. Kilsby, C.G., Jones, P.D., Burton, A., Ford, A.C., Fowler, H.J., Harpham, C., James, P., Smith, A., and Wilby, R.L. (2007) A daily weather generator for use in climate change studies. Environmental Modelling and Software, Vol. 22, No. 12, pp. 1705-1719. https://doi.org/10.1016/j.envsoft.2007.02.005
  22. Mason, S.J. (2004) Simulating climate over western north america using stochastic weather generators. Climatic Change, Vol. 62, No. 1-3, pp. 155-187. https://doi.org/10.1023/B:CLIM.0000013700.12591.ca
  23. Palmer, R., Wiley, M., and Kameenui, A. (2004) Will Climate Change Impact Water Supply and Demand In the Puget Sound?, Department of Civil and Environmental Engineering University of Washington, Seattle WA.
  24. Panofsy, H.A. and Brire, G.W. (1963) Some application of Statistics to Meteorology, Pennsylvania State University, University Park, Pennsylvania, pp. 224.
  25. Racsko, P., Szeidl, L., and Semenov, M. (1991) A serial approach to local stochastic weather models. Ecological Modelling, Vol. 57, No. 1-2, pp. 27-41. https://doi.org/10.1016/0304-3800(91)90053-4
  26. Richardson, C.W. (1981) Stochastic simulation of daily precipitation, temperature and solar radiation. Water Resources Research, Vol. 17, No. 1, pp. 182-190. https://doi.org/10.1029/WR017i001p00182
  27. Semenov, M.A., Brooks R.J., Barrow, E.M., and Richardson, C.W. (1998) Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research, Vol. 10, No. 2, pp. 95-107. https://doi.org/10.3354/cr010095
  28. Watts, M., Goodess, C.M., and Jones, P.D. (2004) The CRU Daily Weather Generator, BETWIXT Technical Briefing Note 1, Version 2, February 2004.
  29. Wilks, D.S. (1992) Adapting stochastic weather generation algorithms for climate change studies. Climatic Change, Vol. 22, No. 1, pp. 67-84. https://doi.org/10.1007/BF00143344
  30. Wood, A.W., Leung, L.R., Sridhar, V., and Lettenmaier, D.P. (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, Vol. 62, No. 1-3, pp. 189-216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e