• Title/Summary/Keyword: power sum polynomials

Search Result 14, Processing Time 0.024 seconds

EVERY POLYNOMIAL OVER A FIELD CONTAINING 𝔽16 IS A STRICT SUM OF FOUR CUBES AND ONE EXPRESSION A2 + A

  • Gallardo, Luis H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.941-947
    • /
    • 2009
  • Let q be a power of 16. Every polynomial $P\in\mathbb{F}_q$[t] is a strict sum $P=A^2+A+B^3+C^3+D^3+E^3$. The values of A,B,C,D,E are effectively obtained from the coefficients of P. The proof uses the new result that every polynomial $Q\in\mathbb{F}_q$[t], satisfying the necessary condition that the constant term Q(0) has zero trace, has a strict and effective representation as: $Q=F^2+F+tG^2$. This improves for such q's and such Q's a result of Gallardo, Rahavandrainy, and Vaserstein that requires three polynomials F,G,H for the strict representation $Q=F^2$+F+GH. Observe that the latter representation may be considered as an analogue in characteristic 2 of the strict representation of a polynomial Q by three squares in odd characteristic.

SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.879-897
    • /
    • 2010
  • Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if $a_iRb_j$ = 0 for each i, j whenever polynomials $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x]$ satisfy f(x)R[x]g(x) = 0. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism $\sigma$, then f(x)R[x; $\sigma$]g(x) = 0 implies $a_iR{\sigma}^{i+k}(b_j)=0$ for any integer k $\geq$ 0 and i, j, where $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x,\;{\sigma}]$. Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define $\sigma$-skew quasi-Armendariz rings for an endomorphism $\sigma$ of a ring R. Then we study several extensions of $\sigma$-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and $\sigma$-skew Armendariz rings.

A NOTE ON CONTINUED FRACTIONS WITH SEQUENCES OF PARTIAL QUOTIENTS OVER THE FIELD OF FORMAL POWER SERIES

  • Hu, Xuehai;Shen, Luming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.875-883
    • /
    • 2012
  • Let $\mathbb{F}_q$ be a finite field with q elements and $\mathbb{F}_q((X^{-1}))$ be the field of all formal Laurent series with coefficients lying in $\mathbb{F}_q$. This paper concerns with the size of the set of points $x{\in}\mathbb{F}_q((X^{-1}))$ with their partial quotients $A_n(x)$ both lying in a given subset $\mathbb{B}$ of polynomials in $\mathbb{F}_q[X]$ ($\mathbb{F}_q[X]$ denotes the ring of polynomials with coefficients in $\mathbb{F}_q$) and deg $A_n(x)$ tends to infinity at least with some given speed. Write $E_{\mathbb{B}}=\{x:A_n(x){\in}\mathbb{B},\;deg\;A_n(x){\rightarrow}{\infty}\;as\;n{\rightarrow}{\infty}\}$. It was shown in [8] that the Hausdorff dimension of $E_{\mathbb{B}}$ is inf{$s:{\sum}_{b{\in}\mathbb{B}}(q^{-2\;deg\;b})^s$ < ${\infty}$}. In this note, we will show that the above result is sharp. Moreover, we also attempt to give conditions under which the above dimensional formula still valid if we require the given speed of deg $A_n(x)$ tends to infinity.

On the Historical investigation of Sums of Power of Consecutive Integer (연속된 정수의 멱의 합의 변천사에 대한 고찰)

  • Kang Dong-Jin;Kim Dae-Yeoul;Park Dal-Won;Seo Jong-Jin;Rim Seog-Hoo;Jang Lee-Chae
    • Journal for History of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • In 1713, J. Bernoulli first discovered the method which one can produce those formulae for the sum $\sum\limits_{\iota=1}^{n}\;\iota^k$ for any natural numbers k ([5],[6]). In this paper, we investigate for the historical background and motivation of the sums of powers of consecutive integers due to J. Bernoulli. Finally, we introduce and discuss for the subjects which are studying related to these areas in the recent.

  • PDF