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A NOTE ON CONTINUED FRACTIONS WITH

SEQUENCES OF PARTIAL QUOTIENTS OVER

THE FIELD OF FORMAL POWER SERIES

Xuehai Hu and Luming Shen

Abstract. Let Fq be a finite field with q elements and Fq((X−1)) be the
field of all formal Laurent series with coefficients lying in Fq . This paper
concerns with the size of the set of points x ∈ Fq((X−1)) with their

partial quotients An(x) both lying in a given subset B of polynomials
in Fq [X] (Fq [X] denotes the ring of polynomials with coefficients in Fq)
and degAn(x) tends to infinity at least with some given speed. Write
EB = {x : An(x) ∈ B,degAn(x) → ∞ as n → ∞}. It was shown in [8]

that the Hausdorff dimension of EB is inf{s :
∑

b∈B(q
−2 deg b)s < ∞}. In

this note, we will show that the above result is sharp. Moreover, we also
attempt to give conditions under which the above dimensional formula
still valid if we require the given speed of degAn(x) tends to infinity.

1. Introduction

Given a real number x ∈ [0, 1), let

x =
1

a1(x) +
1

a2(x) +
1

a3(x) + · · ·

:= [a1(x), a2(x), a3(x), . . .],

be its continued fraction expansion, and an(x) ∈ N are called the partial quo-
tients of x.

The theory of continued fractions has close connections with dynamical sys-
tem, ergodic theory, probability theory, Diophantine approximation and so on.
Some important results in above areas had obtained by means of continued
fractions. Among them, Pollington and Velani [15] studied famous Littlewood’s
conjecture by taking advantage of continued fractions; Kim [10] used continued
fractions to discuss shrinking target property of irrational rotations and so on.
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The investigation on the dimension theory of continued fractions with some
restrictions on their partial quotients has a long history, which can be traced
back to Jarnik [9]. Among them, Good [5] showed that

{x ∈ [0, 1) : an(x) → ∞ as n → ∞}

is of Hausdorff dimension 1
2 and he also obtained that the general set

{x ∈ [0, 1) : an(x) ≥ f(n) for all n ≥ 1}

enjoys the unchanged dimension one-half, when f : N → N tends to infinity at
a moderate growth rate.

For a further investigation, Hirst [6] introduced the set with an(x) being
further restricted to some given sequence of natural numbers. More precisely,
let Λ be an infinite sequence of positive integers b1 < b2 < · · · . Set

EΛ = {x ∈ [0, 1) : an(x) ∈ Λ (n ≥ 1) and an(x) → ∞ as n → ∞}.

The size of EΛ was studied by Hirst [6], Cusick [3] and was determined com-
pletely by Wang and Wu [17], who showed that (dimH denotes the Hausdorff
dimension of a set)

(1) dimH EΛ =
τ(Λ)

2
, where τ(Λ) = lim sup

n→∞

log n

log bn
.

At the same time, in [6], Hirst also conjectured that the size of the set

(2) EΛ(f) = {x ∈ [0, 1) : an(x) ∈ Λ and an(x) ≥ f(n), ∀n ≥ 1}

should be independent with f , where f : N → N tends to infinity as n → ∞.
In contrast with Good’s result, it should be possible that, when f grows

slowly enough, dimH EΛ(f) should be unchanged. Nevertheless, Wu [20] re-
cently showed that no matter how slow f grows, there exists some infinite
subset Λ ∈ N such that the formula (1) does not hold any more.

In view that the structure of continued fractions is more regular in the field
of formal Laurent series than that in real field, one would like to suspect what
will happen in the field of formal Laurent series. In fact, the first author and
Wu [8] had obtained an analogous result as (1) by proving that:

Theorem 1.1 ([8]). Let B be an infinite subset of polynomials with positive
degree in Fq[X], and set

E(B) = {x ∈ I : An(x) ∈ B, ∀ n ≥ 1 and degAn(x) → ∞ as n → ∞}.

We have

dimH E(B) = αB : = inf{s :
∑
b∈B

(q−2 deg b)s < ∞}

= lim sup
n→∞

log ♯{b ∈ B : deg b = n}
2n log q

.
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Similar to the real case, it arises naturally to ask whether the above formula
still holds in the field of formal Laurent series, when degAn(x) is assumed with
given asymptotic growth orders? More precisely, let f : N → N with f(n) → ∞
as n → ∞ and set

E(B, f) = {x ∈ I : An(x) ∈ B and degAn(x) ≥ f(n) for all n ≥ 1}.

Will we still have

(3) dimH E(B, f) = αB?

If not, under what conditions it will be the case. In this note, we will answer
these two questions by showing that:

Theorem 1.2. Let f : N → N with f(n) → ∞ as n → ∞. Then there exists
B ⊂ Fq[X] such that

αB =
1

2
, but dimH E(B, f) = 0.

Theorem 1.3. Let B be an infinite set of polynomials with positive degree in
Fq[X]. Assume that the limit

(4) lim
n→∞

log ♯{b ∈ B : deg b = n}
2n log q

exists (denote by αB) and f : N → N satisfying

(5) lim
n→∞

f(n) = ∞, lim sup
n→∞

log f(n)

n
= 0.

Then we have

dimH E(B, f) = αB.

Remark 1.4. We remark that the restrictions in Theorem 1.3 is optimal, to
some extent, in the sense that:

(I) Theorem 1.2 implies that the formula (3) can’t be held in general with
no restrictions on asymptotic behaviors on ♯{b ∈ B : deg b = n};

(II) If we take B = Fq[X]. In [7], we showed that

dimH{x ∈ I : degAn(x) ≥ an, ∀n ≥ 1} =
1

a+ 1
̸= αB,

which implies that, to make formula (3) still functions in general, some restric-
tions should also be assumed on the growth order of f .

2. Preliminaries

In this section, we give a briefly review on the continued fraction expansions
over the field of formal Laurent series.
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Let Fq be a finite field of q elements and Fq

(
(X−1)

)
denote the field of all

formal Laurent series with coefficients in Fq, and Fq[X] denotes the ring of
polynomials with coefficients in Fq, i.e.,

Fq

(
(X−1)

)
=

{
x =

∞∑
n=n0

cnX
−n : n0 ∈ Z, cn ∈ Fq

}
,

Fq[X] =
{
[x] =

0∑
n=n0

cnX
−n : x =

∞∑
n=n0

cnX
−n ∈ Fq

(
(X−1)

)}
.

For each x ∈ Fq

(
(X−1)

)
, the order of x is defined as v(x) = − deg x =

inf{n ∈ Z : cn ̸= 0} and with the convention v(0) = +∞. Define a non-
Archimedean valuation on Fq

(
(X−1)

)
as

∥x∥ = q−v(x) for all x ∈ Fq

(
(X−1)

)
.

The field Fq

(
(X−1)

)
is locally compact and complete under the metric

ρ(x, x′) = ∥x− x′∥.

Remark 2.1. Since the valuation ∥ ·∥ is non-Archimedean, it follows that if two
discs intersect, then one contains the other.

Let I denote the valuation ideal of Fq

(
(X−1)

)
, i.e.,

I =
{
x ∈ Fq

(
(X−1)

)
: ∥x∥ < 1

}
=

{
x =

∞∑
n=1

cnX
−n : cn ∈ Fq

}
.

Let P denote the Haar measure on Fq

(
(X−1)

)
normalized to 1 on I.

Consider the following transformation from I to I defined by

Tx :=
1

x
−

[
1

x

]
, T0 := 0.

This map describes the regular continued fraction over the field of Laurent
series and has been introduced by Artin [1]. As in the classical theory, every
x ∈ I has the following continued fraction expansion:

x =
1

A1(x) +
1

A2(x) +
1

A3(x) + · · ·

:= [A1(x), A2(x), A3(x), . . .],

where the digits Ai(x) are polynomials of strictly positive degree and are defined

by An(x) =
[

1
Tn−1(x)

]
, when Tn−1(x) ̸= 0 for all n ≥ 1.

The metric properties and the Diophantine approximation of elements of
Fq

(
(X−1)

)
have been studied extensively (see, e.g. the survey papers by

Schmidt [16], Berthé and Nakada [2], Lasjaunias [12]). For results on the di-
mension theory over the field of formal Laurent series, one refers to Niederreiter
and Vielhaber [13, 14], Kristensen [11], Wu [7, 18, 19].
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At the end of this section, we recall the following result, which will be used
frequently. For details, we refer to Niederreiter [13] or Berthe and Nakada [2].

Lemma 2.2 ([2, 13]). For any A1, A2, . . . , An ∈ Fq[X] with strictly positive
degree, call

I(A1, . . . , An) = {x ∈ I : A1(x) = A1, . . . , An(x) = An}
an nth order fundamental cylinder. Each nth order fundamental cylinder I(A1,
A2, . . . , An) is a disc with diameter

|I(A1, A2, . . . , An)| = q−2
∑n

k=1 degAk−1

and
P(I(A1, A2, . . . , An)) = q−2

∑n
k=1 degAk ,

where P is the Haar measure on I.

3. Proof of results

Proof of Theorem 1.2. Let f be a given function defined on N such that f(n) →
∞ as n → ∞. We will construct a set B ⊂ Fq[X] such that αB = 1

2 , but
dimH E(B, f) = 0.

At first, choose an integer sequence {nk, k ≥ 1} ⊂ N by induction. Let
n1 =min{n ∈ N : f(n) > 2}, n2 = n1 + 1, and then choose {nk, k ≥ 3}
satisfying

(k − 1)nk−1 + 1 < f(nk) for all k ≥ 3.

Let B be all polynomials with positive degree and coefficients lying in Fq

whose degree equal to 2n2 , 3n3 , . . . , (k − 1)nk−1 , . . ., that is

B = {b ∈ Fq[X] : deg b = 2n2 , 3n3 , . . . , (k − 1)nk−1 , knk , . . .}.
By the results of Theorem 1.1, we have

αB = lim sup
n→∞

log ♯{b ∈ B : deg b = n}
2n log q

≥ lim sup
k→∞

log(q − 1)qk
nk

2 log qk
nk

=
1

2
.

On the other hand, we note that ♯{b ∈ B : deg b = n} ≤ (q−1)qn for all n ≥ 1,
this leads to αB ≤ 1

2 .
Next, we will show that the Hausdorff dimension of E(B, f) is zero for the

above B. For any x ∈ E(B, f), we have An(x) ∈ B and degAn(x) ≥ f(n), ∀ n ≥
1. By the construction of the set B and the sequence nk, for any k ≥ 1, we get

degAnk
(x) ≥ f(nk) > (k − 1)nk−1 + 1 =⇒ degAnk

(x) ≥ knk .

Therefore, for any M > 1,

E(B, f) ⊂ {x ∈ I : degAn(x) ≥ Mn, i.o. n}.
By [7, Theorem 2.2], dimH E(B, f) ≤ 1

M+1 . Since M > 1 is arbitrary, we have

dimH E(B, f) = 0.

This completes the proof. □
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Next we will apply the following lemma, see [4, Proposition 2.3], to give a
lower bound of Hausdorff dimension of the set in question.

Lemma 3.1. Suppose E ⊂ I, and µ is a finite measure with µ(E) > 0. If

dimlocµ(x) = lim inf
r→0

logµ(B(x, r))

log r
≥ s(6)

for all x ∈ E, then

dimH E ≥ s.

Proof of Theorem 1.3. For the upper bound, we note that

E(B, f) = {x ∈ I : An(x) ∈ B and degAn(x) ≥ f(n) for all n ≥ 1}
⊂ E(B) = {x : An(x) ∈ B for all n ≥ 1 and degAn(x) → ∞},

and by Theorem 1.1, we get dimH E(B, f) ≤ αB immediately.
And for the lower bound, we first note that αB > 0, and then the assumptions

(4) and (5) imply that for any ϵ > 0, there exists some N(ϵ) ∈ N such that
when n ≥ N(ϵ), we have

(7) f(n) ≤ (1 + ϵ)n and ♯{b ∈ B : deg b = n} ≥ q2n(αB−ϵ).

Write Bn = {b ∈ B : deg b = n}. Next we define the sets Ln:
For 1 ≤ n < N(ϵ), let Ln be a singleton with its element bn ∈ B and

deg bn ≥ f(n);
For n ≥ N(ϵ), in the light of (7), we can choose Ln a subset of Bn with

(8) ♯Ln =
⌊
q2n(αB−ϵ)

⌋
+ 1.

Set

F (B, ϵ) :=
{
x ∈ I : An(x) ∈ L⌊

(1+ϵ)n
⌋
+1

for all n ≥ 1
}
.

It is evident that F (B, ϵ) ⊂ E(B, f) by the fact shown by (7).
A symbolic space will be introduced to make the argument briefly. For any

n ≥ 1, write

Dn = {(σ1, . . . , σn) : σk ∈ L⌊
(1+ϵ)k

⌋
+1

, 1 ≤ k ≤ n}.

For any (σ1, . . . , σn) ∈ Dn, call

I(σ1, . . . , σn) := {x ∈ I : Ak(x) = σk, 1 ≤ k ≤ n}

an admissible cylinder of order n (with respect to F (B, ϵ)). Then it gives

F (B, ϵ) =
∞∩

n=1

∪
(σ1,...,σn)∈Dn

I(σ1, . . . , σn).
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Now a set function µ will be constructed on admissible cylinders by: µ(I) = 1
and for any n ≥ 1 and (σ1, . . . , σn) ∈ Dn

(9) µ(I(σ1, . . . , σn)) =

n∏
j=1

1

♯L⌊
(1+ϵ)j

⌋
+1

.

It is easy to check that the measure µ is well defined. Then by Kolmogorov
extension theorem, the set function µ can be extended into a probability mea-
sure supported on F (B, ϵ).

To apply the mass distribution principle (Lemma 3.1) to obtain a lower
bound on dimH F (B, ϵ), we are in the position to estimate the µ-measure of
arbitrary ball B(x, r) with x ∈ F (B, ϵ).

For any x ∈ F (B, ϵ), there exists a sequence {σn}∞n=1 such that (σ1, . . . , σn) ∈
Dn and x ∈ I(σ1, . . . , σn) for all n ≥ 1. For any r > 0 small enough, there
exists n ∈ N such that

|I(σ1, . . . , σn, σn+1)| < r ≤ |I(σ1, . . . , σn)|.
Then by Remark 2.1, it follows

B(x, r) ⊂ I(σ1, . . . , σn).

Denote T (ϵ) =min{n :
⌊
(1 + ϵ)n

⌋
+ 1 ≥ N(ϵ)}, it is easy to see that T (ϵ) < ∞

by the boundedness of N(ϵ). Thus by the construction of both the measure µ
(see (9)) and the sets Ln (see (8)), the measure µ on the ball B(x, r) can be
estimated by

µ(B(x, r)) ≤ µ(I(σ1, . . . , σn)) ≤ q−2(αB−ϵ)
∑n

k=T (ϵ)(
⌊
(1+ϵ)k

⌋
+1).

On the other hand, with the result of Lemma 2.2, the diameter of admissible
cylinder I(σ1, . . . , σn, σn+1) is

|I(σ1, . . . , σn, σn+1)| = q
−2(

∑T (ϵ)−1
k=1 deg σk+

∑n+1
k=T (ϵ)

(
⌊
(1+ϵ)k

⌋
+1))−1

.

As a result, we have

lim inf
r→0

logµ(B(x, r))

log r

≥ lim inf
n→∞

logµ(I(σ1, . . . , σn))

log |I(σ1, . . . , σn, σn+1)|

≥ lim inf
n→∞

2(αB − ϵ)
∑n

k=T (ϵ)(
⌊
(1 + ϵ)k

⌋
+ 1)

2(
∑T (ϵ)−1

k=1 deg σk +
∑n+1

k=T (ϵ)(
⌊
(1 + ϵ)k

⌋
+ 1)) + 1

=
αB − ϵ

(1 + ϵ)
.

Thus

dimH E(B, f) ≥ dimH F (B, ϵ) ≥ αB − ϵ

(1 + ϵ)
.

Letting ϵ → 0, we obtain the desired result. □
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