References
- E. Artin, Quadratische Korper im Gebiete der hoheren Kongruenzen. I-II, Math. Z. 19 (1924), no. 1, 153-246. https://doi.org/10.1007/BF01181074
- V. Berthe and H. Nakada, On continued fraction expansions in positive characteristic: equivalence relations and some metric properties, Expo. Math. 18 (2000), no. 4, 257- 284.
- T. W. Cusick, Hausdorff dimension of sets of continued fractions, Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 163, 277-286. https://doi.org/10.1093/qmath/41.3.277
- K. J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997.
- I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc. 37 (1941), 199-228. https://doi.org/10.1017/S030500410002171X
- K. E. Hirst, Continued fractions with sequences of partial quotients, Proc. Amer. Math. Soc. 38 (1973), 221-227. https://doi.org/10.1090/S0002-9939-1973-0311581-4
- X. H. Hu, B. W.Wang, J.Wu, and Y. L. Yu, Cantor sets determined by partial quotients of continued fractions of Laurent series, Finite Fields Appl. 14 (2008), no. 2, 417-437. https://doi.org/10.1016/j.ffa.2007.04.002
- X. H. Hu and J. Wu, Continued fractions with sequences of partial quotients over the field of Laurent series, Acta Arith. 136 (2009), no. 3, 201-211. https://doi.org/10.4064/aa136-3-1
- I. Jarnik, Zur metrischen Theorie der diophantischen Approximationen, Proc. Mat. Fyz. 36 (1928), 91-106.
- D. H. Kim, The shrinking target property of irrational rotations, Nonlinearity 20 (2007), no. 7, 1637-1643. https://doi.org/10.1088/0951-7715/20/7/006
- S. Kristensen, On well-approximable matrices over a field of formal series, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 2, 255-268. https://doi.org/10.1017/S0305004103006911
- A. Lasjaunias, A survey of Diophantine approximation in fields of power series, Monatsh. Math. 130 (2000), no. 3, 211-229. https://doi.org/10.1007/s006050070036
- H. Niederreiter, The probabilistic theory of linear complexity, Advances in cryptology- EUROCRYPT '88 (Davos, 1988), 191-209, Lecture Notes in Comput. Sci., 330, Springer, Berlin, 1988.
- H. Niederreiter and M. Vielhaber, Linear complexity profiles: Hausdorff dimensions for almost perfect profiles and measures for general profiles, J. Complexity. 13 (1997), no. 3, 353-383. https://doi.org/10.1006/jcom.1997.0451
- A. D. Pollington and S. L. Velani, On a problem in simultaneous Diophantine approximation: Littlewood's conjecture. Acta Math. 185 (2000), no. 2, 287-306. https://doi.org/10.1007/BF02392812
- W. M. Schmidt, On continued fractions and Diophantine approximation in power series fields, Acta Arith. 95 (2000), no. 2, 139-166.
- B. W. Wang and J. Wu, A problem of Hirst on continued fractions with sequences of partial quotients, Bull. Lond. Math. Soc. 40 (2008), no. 1, 18-22. https://doi.org/10.1112/blms/bdm103
- J. Wu, On the sum of degrees of digits occurring in continued fraction expansions of Laurent series, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 1, 9-20. https://doi.org/10.1017/S0305004104008163
- J. Wu, Hausdorff dimensions of bounded type continued fraction sets of Laurent series, Finite Fields Appl. 13 (2007), no. 1, 20-30. https://doi.org/10.1016/j.ffa.2005.05.003
- J. Wu, A remark on continued fractions with sequences of partial quotients, J. Number Theory 128 (2008), no. 8, 2394-2397. https://doi.org/10.1016/j.jnt.2007.12.004