DOI QR코드

DOI QR Code

A NOTE ON CONTINUED FRACTIONS WITH SEQUENCES OF PARTIAL QUOTIENTS OVER THE FIELD OF FORMAL POWER SERIES

  • Hu, Xuehai (College of Science Huazhong Agricultural University) ;
  • Shen, Luming (Science College of Hunan Agricultural University)
  • Received : 2011.04.27
  • Published : 2012.07.31

Abstract

Let $\mathbb{F}_q$ be a finite field with q elements and $\mathbb{F}_q((X^{-1}))$ be the field of all formal Laurent series with coefficients lying in $\mathbb{F}_q$. This paper concerns with the size of the set of points $x{\in}\mathbb{F}_q((X^{-1}))$ with their partial quotients $A_n(x)$ both lying in a given subset $\mathbb{B}$ of polynomials in $\mathbb{F}_q[X]$ ($\mathbb{F}_q[X]$ denotes the ring of polynomials with coefficients in $\mathbb{F}_q$) and deg $A_n(x)$ tends to infinity at least with some given speed. Write $E_{\mathbb{B}}=\{x:A_n(x){\in}\mathbb{B},\;deg\;A_n(x){\rightarrow}{\infty}\;as\;n{\rightarrow}{\infty}\}$. It was shown in [8] that the Hausdorff dimension of $E_{\mathbb{B}}$ is inf{$s:{\sum}_{b{\in}\mathbb{B}}(q^{-2\;deg\;b})^s$ < ${\infty}$}. In this note, we will show that the above result is sharp. Moreover, we also attempt to give conditions under which the above dimensional formula still valid if we require the given speed of deg $A_n(x)$ tends to infinity.

Keywords

References

  1. E. Artin, Quadratische Korper im Gebiete der hoheren Kongruenzen. I-II, Math. Z. 19 (1924), no. 1, 153-246. https://doi.org/10.1007/BF01181074
  2. V. Berthe and H. Nakada, On continued fraction expansions in positive characteristic: equivalence relations and some metric properties, Expo. Math. 18 (2000), no. 4, 257- 284.
  3. T. W. Cusick, Hausdorff dimension of sets of continued fractions, Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 163, 277-286. https://doi.org/10.1093/qmath/41.3.277
  4. K. J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997.
  5. I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc. 37 (1941), 199-228. https://doi.org/10.1017/S030500410002171X
  6. K. E. Hirst, Continued fractions with sequences of partial quotients, Proc. Amer. Math. Soc. 38 (1973), 221-227. https://doi.org/10.1090/S0002-9939-1973-0311581-4
  7. X. H. Hu, B. W.Wang, J.Wu, and Y. L. Yu, Cantor sets determined by partial quotients of continued fractions of Laurent series, Finite Fields Appl. 14 (2008), no. 2, 417-437. https://doi.org/10.1016/j.ffa.2007.04.002
  8. X. H. Hu and J. Wu, Continued fractions with sequences of partial quotients over the field of Laurent series, Acta Arith. 136 (2009), no. 3, 201-211. https://doi.org/10.4064/aa136-3-1
  9. I. Jarnik, Zur metrischen Theorie der diophantischen Approximationen, Proc. Mat. Fyz. 36 (1928), 91-106.
  10. D. H. Kim, The shrinking target property of irrational rotations, Nonlinearity 20 (2007), no. 7, 1637-1643. https://doi.org/10.1088/0951-7715/20/7/006
  11. S. Kristensen, On well-approximable matrices over a field of formal series, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 2, 255-268. https://doi.org/10.1017/S0305004103006911
  12. A. Lasjaunias, A survey of Diophantine approximation in fields of power series, Monatsh. Math. 130 (2000), no. 3, 211-229. https://doi.org/10.1007/s006050070036
  13. H. Niederreiter, The probabilistic theory of linear complexity, Advances in cryptology- EUROCRYPT '88 (Davos, 1988), 191-209, Lecture Notes in Comput. Sci., 330, Springer, Berlin, 1988.
  14. H. Niederreiter and M. Vielhaber, Linear complexity profiles: Hausdorff dimensions for almost perfect profiles and measures for general profiles, J. Complexity. 13 (1997), no. 3, 353-383. https://doi.org/10.1006/jcom.1997.0451
  15. A. D. Pollington and S. L. Velani, On a problem in simultaneous Diophantine approximation: Littlewood's conjecture. Acta Math. 185 (2000), no. 2, 287-306. https://doi.org/10.1007/BF02392812
  16. W. M. Schmidt, On continued fractions and Diophantine approximation in power series fields, Acta Arith. 95 (2000), no. 2, 139-166.
  17. B. W. Wang and J. Wu, A problem of Hirst on continued fractions with sequences of partial quotients, Bull. Lond. Math. Soc. 40 (2008), no. 1, 18-22. https://doi.org/10.1112/blms/bdm103
  18. J. Wu, On the sum of degrees of digits occurring in continued fraction expansions of Laurent series, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 1, 9-20. https://doi.org/10.1017/S0305004104008163
  19. J. Wu, Hausdorff dimensions of bounded type continued fraction sets of Laurent series, Finite Fields Appl. 13 (2007), no. 1, 20-30. https://doi.org/10.1016/j.ffa.2005.05.003
  20. J. Wu, A remark on continued fractions with sequences of partial quotients, J. Number Theory 128 (2008), no. 8, 2394-2397. https://doi.org/10.1016/j.jnt.2007.12.004