• Title/Summary/Keyword: power integrity

Search Result 712, Processing Time 0.032 seconds

Development of Integrity Evaluation Instrument for the Power Line Surge Protective Device (전원용 SPD의 건전성 평가 장치 개발)

  • Chang, Sughun;Kim, Youngjin;Kim, Sungju;Kim, Jaehyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.39-45
    • /
    • 2015
  • This paper deals with development of integrity evaluation instrument for the power line surge protective device. A reliable power supply is an essential element in the developed information and communication society by highly advances in IT technology. However, the lightning incidence also increased with the recent extreme weather events. In Korea, in order to protect the electrical system from lightning surge, SPD(Surge Protective Device) has been used for these past 30 years. However, the method of diagnosing the safety of the SPD in the industry is insufficient. In this paper, SPD integrity evaluation system was composed of a variable DC power source unit, voltage-current sensor and the embedded controller. In order to measure V-I characteristics of MOV, 3 type samples were degraded by impulse current generator. After impulse tests, the varistor voltage of all samples and nonlinearity coefficient were decreased. It confirmed the utility of the developed equipment by this experimental test and the reliability of SPD is expected for surge accident prevention when applied to industrial plant.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

Power Distribution Network Modeling using Block-based Approach

  • Chew, Li Wern
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.75-79
    • /
    • 2013
  • A power distribution network (PDN) is a network that provides connection between the voltage source supply and the power/ground terminals of a microprocessor chip. It consists of a voltage regulator module, a printed circuit board, a package substrate, a microprocessor chip as well as decoupling capacitors. For power integrity analysis, the board and package layouts have to be transformed into an electrical network of resistor, inductor and capacitor components which may be expressed using the S-parameters models. This modeling process generally takes from several hours up to a few days for a complete board or package layout. When the board and package layouts change, they need to be re-extracted and the S-parameters models also need to be re-generated for power integrity assessment. This not only consumes a lot of resources such as time and manpower, the task of PDN modeling is also tedious and mundane. In this paper, a block-based PDN modeling is proposed. Here, the board or package layout is partitioned into sub-blocks and each of them is modeled independently. In the event of a change in power rails routing, only the affected sub-blocks will be reextracted and re-modeled. Simulation results show that the proposed block-based PDN modeling not only can save at least 75% of processing time but it can, at the same time, keep the modeling accuracy on par with the traditional PDN modeling methodology.

Premature Failure Analysis of Servovalve Components for a Thermal Power Plant

  • Chang, Sung-Yong;Chang, Joong-Chel;Kim, Bum-Soo;Seo, Min-Woo;Choi, Chel-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.708-714
    • /
    • 2011
  • The premature failure of a servovalve used for six months in a thermal power plant has been analyzed. The servovalve was made of stainless steel, containing 16Cr-0.44Mo, along with other elements. An overload of oil-supply pumping and an abnormal increase in the oil flux were observed during operation. A study revealed that erosion and corrosion could be the main causes of the failure. The visual examination of the servovalve did not show any appreciable damage. However, corrosion and erosion of the servovalve were observed using scanning electron microscopy (SEM). Upon examination of the servovalve, the corrosion was found to have occurred throughout the bushing and spool; however, erosion occurred at only the edge-side. In addition, the condition of the electrohydraulic control system (EHC) oil was investigated with respect to its satisfaction of the management standard.

A Study on Architecture Design of Power Supply for SIL4 Safety Related System (SIL4 안전관련 시스템에 적합한 전원장치의 구조 설계에 대한 연구)

  • Yoo, Deung-Ryeol;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.1001-1008
    • /
    • 2015
  • This paper introduces the architecture of the power supply in order to achieve the safety integrity target for power supply which is a part of safety related system. The integrity level for safety is set 4 and according to the IEC 62425 which is standard for railway application the architecture design is conducted and process for design is developed. The procedure for design consists with 6 steps. The architecture of power supply that is able to keep the safety integrity against of failure of power supply is derived through the analysis and it is suggested that the power supply adopted the result in this paper is suitable to apply in safety system. Also, the failure frequency that is a quantitative value for the power supply is proposed.

A Study on the Precautions Effects of the Enclosure Integrity Test for the Gaseous Extinguishing Systems: Focusing on the Power Plant (가스계 소화설비의 밀폐도 시험에 영향을 미치는 사전조치에 관한 연구: 발전소를 중심으로)

  • Kim, Young-Chul;Jo, Il-Hyun;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • The present study was aimed to analyze enclosure integrity test, which is the performance experiment of soaking time, in a fire zone equipped with gaseous extinguishing system in an effort to find understand the effect of precaution factors upon the success of fire extinguishment. To achieve the goal of this study, it divided the fire zones of internal and external power plants into ones taking precaution measures and not taking them and then enclosure integrity test was given respectively. Therefore, this study examined the success rate if the test according to the presence and absence of the precaution measure and confirmed the failure factors, designed concentration soaking time and proportion of leakage area to total volume area by type of gaseous extinguishing system and rooms. Precaution measures were applied to the fire zones without them to confirm the increase of the success rate of enclosure integrity test. By doing so, it was found that reduced number of experiments caused by failure led to cost saving.

Study of EMC Optimization of Automotive Electronic Components using ECAE

  • Kim, Tae-Ho;Kim, Mi-Ro;Jung, Sang-Yong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.248-251
    • /
    • 2014
  • As more vehicles become equipped with advanced electronic control systems, more consideration is needed with regards to automotive safety issues related to the effects of electromagnetic waves. Unwanted electromagnetic waves from the antenna, electricity and other electronic devices cause the performance and safety problem of automotive components. In general, Power Integrity and Signal Integrity analysis have been widely used, but these analyses have stayed PCB level. PCB base analysis is different from radiated emission TEST condition so its results are used just for reference. This paper proposes EMC optimization technology using module level 3-dimensional radiation simulation process closed to fundamental test conditions. If module level EMC analysis, which is proposed in this study, is applied to all automotive electronics systems, unexpected EMC noise will be prevented.

Review on the Integrity Evaluation and Maintenance of Wall-Thinned Pipe (감육배관의 건전성평가 및 정비 관련 기술기준 고찰)

  • Lee, Sung Ho;Lee, Yo Seob;Kim, Hong Deok;Lee, Kyoung Soo;Hwang, Kyeong Mo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion, cavitation, flashing and/or liquid droplet impingement, is a main concern in secondary steam cycle piping system of nuclear power plants in terms of safety and operability. Thinned pipe management program (TPMP) has being developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning. In this paper, newest technologies, standards and regulations related to the integrity assessment, repair and replacement of thinned pipe component are reviewed. And technical improvement items in TPMP to secure the reliability and effectiveness are also presented.

A Review of Plugging Limit for Steam Generator Tubes in Nuclear Power Plants (원전 증기발생기 전열관 관막음 한계 고찰)

  • Kang, Yong Seok;Lee, Kuk Hee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.10-17
    • /
    • 2020
  • Securing the integrity of steam generator tubes is an essential requirement for safe operation of nuclear power plants. Therefore, tubes that do not satisfy integrity requirements are no longer usable and must be repaired according to the related requirements. In general, the repair criterion is that the damage depth is more than 40% of the tube wall thickness. However, the plugging limit can be changed and be applied, provided a technical proof is given that integrity can be secured against specific degradation at a specific plants and that approval can be obtained from a regulatory agency. A typical example is alternative repair criteria for defects within the tube sheet or tube support plates. In this paper, a background of establishing the plugging limit for steam generator tubes and changes in maintenance criteria are reviewed as examples.

A study on Source Stability Design Method by Power Integrity Analysis (전원무결성 해석에 의한 PCB 전원안정화 설계기법 연구)

  • Chung, Ki-Hyun;Jang, Young-Jin;Jung, Chang-Won;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.7
    • /
    • pp.753-759
    • /
    • 2014
  • This paper introduces the reduction design technique of the resonance phenomenon of the inner PCB based on power integrity from the analysis about the inner power supply line generating RLC resonance. With the technique, the resonant frequency resulted from the structural characteristics of the PCB can be analyzed and allows to predict and the capacitor for resonance phenomenon reduction can be decided as a decoupling capacitor. From the simulation result, it was confirmed that the PCB's resonance phenomenon reduction design technique should have the reduction effect in the inner motherboard of the industrial controller. This research will be contributed to the improvement of the safety of a PDN (Power Delivery Network) structure in the layout design technique of the PCB.