• 제목/요약/키워드: power and energy consumption

검색결과 2,012건 처리시간 0.03초

저전력 NAND 플래시 메모리를 위한 필터 버퍼의 효율성 분석 (Analysis on the Effectiveness of the Filter Buffer for Low Power NAND Flash Memory)

  • 정보성;이정훈
    • 대한임베디드공학회논문지
    • /
    • 제7권4호
    • /
    • pp.201-207
    • /
    • 2012
  • Currently, NAND Flash memory has been widely used in consumer storage devices due to its non-volatility, stability, economical feasibility, low power usage, durability, and high density. However, a high capacity of NAND flash memory causes the high power consumption and the low performance. In the convention memory research, a hierarchical filter mechanism can archive an effective performance improvement in terms of the power consumption. In order to attain the best filter structure for NAND flash memory, we selected a direct-mapped filter, a victim filter, a fully associative filter and a 4-way set associative filter for comparison in the performance analysis. According to the results of the simulation, the fully associative filter buffer with a 128byte fetching size can obtain the bet performance compared to another filter structures, and it can reduce the energy*delay product(EDP) by about 93% compared to the conventional NAND Flash memory.

국내 유연탄의 발열량 추이 분석(2010~2014년) 및 탄소배출계수 개발 (Domestic Bituminous Coal's Calorific Value Trend Analysis (2010~2014) and Carbon Emission Factor Development)

  • 김민욱;조창상;전영재;양진혁;신호철;전의찬
    • 한국기후변화학회지
    • /
    • 제7권4호
    • /
    • pp.513-520
    • /
    • 2016
  • Korea's energy consumption has been constantly increasing. Final energy consumption was increased by an annual average of 2.9% compared to 2010. The consumption of all energy sources except for its oil was increased during the same time. While electric demand has increased coal consumption increased rapidly. Therefore, calorfic value and carbon emission factor development can improve the quality of Korea's greenhouse gas inventory. Calorific value is the amount of heat generated while burning coal. Caloric value is one of the most important factors in the development of carbon emission factors. Calorific value is used as the basis for the analysis of the various energy statistics. This study has calculated the other bituminous coal and coking coal's calorfic value by the data received from domestic coal-fired power plants and steel manufacturer. Calorofic value's trend analysis period is the year of 2010~2014. Through analyzing the carbon content it was calculated the carbon emission factor. The bituminous coal and coking coal's uncertainty analysis was performed using a Monte Carlo simulation.

무선 센서 네트워크를 위한 에너지 효율적인 클러스터 구성 알고리즘 (An Energy Efficient Cluster Formation Algorithm for Wireless Sensor Networks)

  • 한욱표;이희춘;정영준
    • 정보처리학회논문지C
    • /
    • 제14C권2호
    • /
    • pp.185-190
    • /
    • 2007
  • 무선 센서 네트워크의 각 센서 노드는 배터리 기반의 제한된 에너지로 동작하기 때문에 무선 센서 네트워크에서의 효율적인 에너지 사용에 많은 연구가 이루어지고 있다. 무선 센서 네트워크의 수명을 연장하기 위해서는 무선 센서 네트워크에 존재하는 각 센서 노드들의 전력소비를 줄이는 것도 필요하지만 센서 노드들의 균일한 에너지 소비를 유도하여 가능한 많은 노드들이 생존하는 것이 망의 수명에 더욱 중요한 요인이 된다. 본 논문에서는 클러스터링 기반 라우팅 프로토콜인 LEACH를 기반으로 각 노드의 잔이 에너지를 고려하여 전체 노드의 균형적인 에너지 소모를 유도하는 클러스터 헤드 선정 알고리즘을 제안한다. 제안한 프로토콜에 대해서 시뮬레이션을 기반으로 네트워크 수명에 대한 분석을 수행하였다. 제안한 프로토콜은 심각한 오버헤드나 성능저하 없이 효과적으로 네트워크 수명을 연장하였다.

습식온돌시스템과 전기온돌시스템의 열성능 평가 (Thermal Performance Assessment of Wet Ondol and Electric Ondol System)

  • 한병조;구경완
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.214-220
    • /
    • 2011
  • This paper studies about the assessment of thermal performance between wet ondol system and electric ondol system. Electrical ondol systems shows faster warm-up time, higher floor surface temperature distribution and lower power consumption than wet ondol system. However, if we provide heat regularly wet ondol system which has more heat capacity shows greater thermal storage than electric ondol system. Therefore, we could conclude that wet ondol system which keeps temperature regularly by the thermal storage show better energy-efficiency in case of using the central heating and district heating system. However, Electrical ondol system shows better efficiency in case of using the space during short time or individual heating systems which needs to heat quickly. The Experiment says that electric ondol system has more benefits on timing to reach the set temperature and energy-efficiency than wet ondol system.

하이브리드 모델을 이용하여 중단기 태양발전량 예측 (Mid- and Short-term Power Generation Forecasting using Hybrid Model)

  • 손남례
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.715-724
    • /
    • 2023
  • Solar energy forecasting is essential for (1) power system planning, management, and operation, requiring accurate predictions. It is crucial for (2) ensuring a continuous and sustainable power supply to customers and (3) optimizing the operation and control of renewable energy systems and the electricity market. Recently, research has been focusing on developing solar energy forecasting models that can provide daily plans for power usage and production and be verified in the electricity market. In these prediction models, various data, including solar energy generation and climate data, are chosen to be utilized in the forecasting process. The most commonly used climate data (such as temperature, relative humidity, precipitation, solar radiation, and wind speed) significantly influence the fluctuations in solar energy generation based on weather conditions. Therefore, this paper proposes a hybrid forecasting model by combining the strengths of the Prophet model and the GRU model, which exhibits excellent predictive performance. The forecasting periods for solar energy generation are tested in short-term (2 days, 7 days) and medium-term (15 days, 30 days) scenarios. The experimental results demonstrate that the proposed approach outperforms the conventional Prophet model by more than twice in terms of Root Mean Square Error (RMSE) and surpasses the modified GRU model by more than 1.5 times, showcasing superior performance.

Joint Optimization for Residual Energy Maximization in Wireless Powered Mobile-Edge Computing Systems

  • Liu, Peng;Xu, Gaochao;Yang, Kun;Wang, Kezhi;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5614-5633
    • /
    • 2018
  • Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) are both recognized as promising techniques, one is for solving the resource insufficient of mobile devices and the other is for powering the mobile device. Naturally, by integrating the two techniques, task will be capable of being executed by the harvested energy which makes it possible that less intrinsic energy consumption for task execution. However, this innovative integration is facing several challenges inevitably. In this paper, we aim at prolonging the battery life of mobile device for which we need to maximize the harvested energy and minimize the consumed energy simultaneously, which is formulated as residual energy maximization (REM) problem where the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device are all considered as key factors. To this end, we jointly optimize the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device to solve the REM problem. Furthermore, we propose an efficient convex optimization and sequential unconstrained minimization technique based combining method to solve the formulated multi-constrained nonlinear optimization problem. The result shows that our joint optimization outperforms the single optimization on REM problem. Besides, the proposed algorithm is more efficiency.

슈퍼스칼라 프로세서에서 값 예측을 이용한 모험적 실행의 전력소모 측정 및 분석 (Measurement and Analysis of Power Dissipation of Value Speculation in Superscalar Processors)

  • 이상정;이명근;신화정
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제30권12호
    • /
    • pp.724-735
    • /
    • 2003
  • 최근의 고성능 슈퍼스칼라 프로세서에서는 명령어 수준 병렬성(Instruction-Level Parallelism, ILP)의 장애가 되는 명령어 간의 데이타 종속관계를 극복하기 위해 명령의 결과 값을 미리 예측하여 종속 명령들을 모험적으로 실행한다. 이러한 값 예측을 사용한 모험적 실행으로 성능은 향상되나 값 예측 테이블의 빈번한 참조와 갱신으로 부가적인 전력 소모를 요구한다. 본 논문에서는 값 예측으로 인한 성능향상과 부가적인 전력소모 간의 관계를 측정 분석한다. 또한 확신 카운터(confidence counter)를 사용한 값 예측 시도의 조정으로 모험적 실행의 정도를 조절하고, 예측 성공률이 높은 유용한 명령들만을 선택적으로 예측하여 성능을 유지하면서 부가 전력소모를 줄인다. 제안된 방식의 검증을 위해 사이클 수준 시뮬레이터에 전력소모 모델을 결합하여 프로세서의 기능수준 동작뿐만 아니라 프로세서의 전체 전력소모 및 사이클 당 전력소모도 측정할 수 있는 도구를 개발하여 검증한다.

RIS Selection and Energy Efficiency Optimization for Irregular Distributed RIS-assisted Communication Systems

  • Xu Fangmin;Fu Jinzhao;Cao HaiYan;Hu ZhiRui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1823-1840
    • /
    • 2023
  • In order to improve spectral efficiency and reduce power consumption for reconfigurable intelligent surface (RIS) assisted wireless communication systems, a joint design considering irregular RIS topology, RIS on-off switch, power allocation and phase adjustment is investigated in this paper. Firstly, a multi-dimensional variable joint optimization problem is established under multiple constraints, such as the minimum data requirement and power constraints, with the goal of maximizing the system energy efficiency. However, the proposed optimization problem is hard to be resolved due to its property of nonlinear nonconvex integer programming. Then, to tackle this issue, the problem is decomposed into four sub-problems: topology design, phase shift adjustment, power allocation and switch selection. In terms of topology design, Tabu search algorithm is introduced to select the components that play the main role. For RIS switch selection, greedy algorithm is used to turn off the RISs that play the secondary role. Finally, an iterative optimization algorithm with high data-rate and low power consumption is proposed. The simulation results show that the performance of the irregular RIS aided system with topology design and RIS selection is better than that of the fixed topology and the fix number of RISs. In addition, the proposed joint optimization algorithm can effectively improve the data rate and energy efficiency by changing the propagation environment.

가솔린 차량의 각 요소별 연료소모량 예측 (Prediction of Vehicle Fuel Consumption on a Component Basis)

  • 송해박;유정철;이종화;박경석
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.203-210
    • /
    • 2003
  • A simulation study was carried to analyze the vehicle fuel consumption on component basis. Experiments was also carried out to identify the simulation results, under FTP-75 Hot Phase driving conditions. and arbitrary driving conditions. A good quantitative agreement was obtained. Based on the simulation, fuel energy was used in pumping loss(3.7%), electric power generation(0.7%), engine friction(12.7%), engine inertia(0.7%), torque converter loss(4.6%), drivetrain friction(0.6%), road-load(9.2%), and vehicle inertia(13.4%) under FTP-75 Hot Phase driving conditions. Using simulation program, the effects of capacity factor and idle speed on fuel consumption were estimated. A increment of capacity factor of torque converter resulted in fuel consumption improvement under FTP-75 Hot Phase driving conditions. Effect of a decrement of idle speed on fuel consumption was negligible under the identical driving conditions.

Optimal Energy-Efficient Power Allocation and Outage Performance Analysis for Cognitive Multi-Antenna Relay Network Using Physical-Layer Network Coding

  • Liu, Jia;Zhu, Ying;Kang, GuiXia;Zhang, YiFan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권12호
    • /
    • pp.3018-3036
    • /
    • 2013
  • In this paper, we investigate power allocation scheme and outage performance for a physical-layer network coding (PNC) relay based secondary user (SU) communication in cognitive multi-antenna relay networks (CMRNs), in which two secondary transceivers exchange their information via a multi-antenna relay using PNC protocol. We propose an optimal energy-efficient power allocation (OE-PA) scheme to minimize total energy consumption per bit under the sum rate constraint and interference power threshold (IPT) constraints. A closed-form solution for optimal allocation of transmit power among the SU nodes, as well as the outage probability of the cognitive relay system, are then derived analytically and confirmed by numerical results. Numerical simulations demonstrate the PNC protocol has superiority in energy efficiency performance over conventional direct transmission protocol and Four-Time-Slot (4TS) Decode-and-Forward (DF) relay protocol, and the proposed system has the optimal outage performance when the relay is located at the center of two secondary transceivers.