• Title/Summary/Keyword: powdered materials

Search Result 147, Processing Time 0.029 seconds

Application of new powdered additives to paperboard using peanut husk and garlic stem (땅콩박과 마늘대를 이용한 제지용 분말상 첨가제 적용에 대한 연구)

  • Lee, Ji-Young;Lee, Eun-Kyu;Sung, Yong-Joo;Kim, Chul-Hwan;Choi, Jae-Sung;Kim, Byeong-Ho;Lim, Gi-Baek;Kim, Da-Mi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.40-48
    • /
    • 2011
  • In this study, we investigated the usability of new powdered additives in the paperboard industry. We manufactured the powdered additives from peanut husks and garlic stems by grinding. The chemical composition, particle size, particle size distribution, and particle shape were investigated to identify the basic properties of the powdered raw materials. To determine the effect of the powdered additives on paper properties, handsheets were prepared by adding the powdered additives to the pulp slurry. The chemical composition, such as the contents of holocellulose, lignin, and ash, showed similar values to those of other biomass materials. The particles of peanut husk powder were irregularly shaped, smaller, and had a broader particle size distribution than those of the garlic stem powder, which had the fibril form. The particles of the two powdered raw materials showed a positioning of expansion in the fiber network, resulting in increased bulk and a loss of strength. Handsheets containing garlic stem particles were stronger than handsheets containing peanut husk particles. Finally, the new powdered additives are beneficial to the bulk of paperboard.

Marble wastes as amendments to stabilize heavy metals in Zn-Electroplating sludge

  • Riahi, Khalifa;Chaabane, Safa;Thayer, Bechir Ben
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • Powdered marble wastes (PMW) generated by Utique marble cutting industries (North of Tunisia) with abundant amounts were used in this study as low-cost materials to investigate the stabilization of heavy metals (Pb, Zn, Fe) in sludge generated from a local Zn-Electroplating factory. Powdered marble wastes were evaluated by means of chemical fractions of heavy metals in sludge and concentrations of heavy metals in leachate from columns to determine their ability to stabilize heavy metals in contaminated sludge. Results indicated that chemical fractions of heavy metals in sludge were affected by application of the PMW mineral materials and pH, however, the effects varied with heavy metals. Application of the powdered marble wastes mineral materials reduced exchangeable metals in the sequence of Pb (60.5%)>Fe (40.5%)>Zn (30.1%). X-ray diffraction and hydro-geochemical transport code PHREEQC analysis were successfully carried out to get a better understanding of the mechanisms of reactive mineral phases involved in reduced exchangeable heavy metals in sludge after PMW material amendments. Therefore, metal immobilization using powdered marble wastes materials is an effective stabilization technique for industrial metallic hydroxide sludge.

Novel Bumping Process for Solder on Pad Technology

  • Choi, Kwang-Seong;Bae, Ho-Eun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.340-343
    • /
    • 2013
  • A novel bumping process using solder bump maker is developed for the maskless low-volume solder on pad (SoP) technology of fine-pitch flip chip bonding. The process includes two main steps: one is the aggregation of powdered solder on the metal pads on a substrate via an increase in temperature, and the other is the reflow of the deposited powder to form a low-volume SoP. Since the surface tension that exists when the solder is below its melting point is the major driving force of the solder deposit, only a small quantity of powdered solder adjacent to the pads can join the aggregation process to obtain a uniform, low-volume SoP array on the substrate, regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of $130{\mu}m$ is successfully formed.

Magnetic Properties of Powdered Fe Cores Containing Stainless Steel-making Dusts (스테인레스 제강분진을 함유한 순철 압분코아의 자기특성)

  • Kim S. W.
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.106-111
    • /
    • 2005
  • Effects of stainless steel-making dusts and binder content on compacting $density(\rho)$ and magnetic properties were evaluated. Cores compacted with the mixture of pure Fe powders, $5wt.\%$ dusts and $0.25wt.\%$ binder showed good AC magnetic properties. For example, permeability$({\mu}a)$ and core loss(P) of the cores containing $5wt.\%$ dusts at 500 kHz were 62 and $4008\;{\mu}W/cm^3$, respectively. These properties are almost equivalent to those of competitor's products (i.e, Ancorsteel TC 80 produced by $H\ddot{o}gan\ddot{a}s$ Corp.). The powdered cores obtained from the present work are expected to apply for high-performance soft magnetic components such as normal mode choke filter and pulse transformer.

Evaluation of Physical Performance of High-Strength.High Waterproof Ready-mixed Shotcrete using Powdered Polymer Dispersion (분말형 폴리머 혼화제를 적용한 고강도.고차수성 레디믹스트 숏크리트의 물리적 성능 평가)

  • Ma, Sang-Joon;Choi, Hee-Sup;Lee, Heung-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.337-340
    • /
    • 2008
  • As the Ready-mixed Shotcrete using Powdered Polymer Dispersion, Shotcrete Matrix as totally shotcrete gel that a part of second binder in Shotcrete materials is dense. Also, Ready-mixed Shotcrete is showed the decreasing Rebound and rising Durability. Therefore, it is possible that Ready-mixed Shotcrete for High-Strength and High-Waterproof can apply to the Powdered Polymer Dispersion.

  • PDF

Permeability Characteristics of Soils Mixed with Powdered Sludge of Basalt (현무암 석분슬러지 혼합토의 투수특성)

  • Kim, Ki-Young;Lee, Kang-il;Yun, Jung-Mann;Song, Young-Suk;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.89-94
    • /
    • 2015
  • In this study, the mixed soil with an optimum mixed ratio was suggested in order to recycle the powdered sludge of basalt in Jeju Island as the impermeable liner materials. As the results of soil laboratory tests, the grain size of the powdered sludge of basalt is less than 0.1mm and the powdered sludge was classified into ML or CL category in accordance with the Unified Soil Classification System (USCS). Also, the grain size of natural soils is ranged from 0.1 mm to 10 mm and the soils were classified into SW category in USCS. To select the optimum mixed ratio of powdered sludge, the variable permeability test was performed to various mixed soils with different powdered sludge amount under both optimum compaction and field conditions. As the results of permeability tests, the coefficient of permeability of mixed soils was decreased with increasing the mixed ratio of powdered sludge, and the mixed soil with mixed ratio of 60% has the minimum coefficient of permeability. Therefore, the optimum mixed ratio of powdered sludge is 60% for recycling the powdered sludge of basalt as the impermeable liner materials.

Effect of Morphology and Dispersibility of Silica Nanoparticles on the Mechanical Behaviour of Cement Mortar

  • Singh, Lok Pratap;Goel, Anjali;Bhattachharyya, Sriman Kumar;Ahalawat, Saurabh;Sharma, Usha;Mishra, Geetika
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.207-217
    • /
    • 2015
  • The influence of powdered and colloidal nano-silica (NS) on the mechanical properties of cement mortar has been investigated. Powdered-NS (~40 nm) was synthesized by employing the sol-gel method and compared with commercially available colloidal NS (~20 nm). SEM and XRD studies revealed that the powdered-NS is non-agglomerated and amorphous, while colloidal-NS is agglomerated in nature. Further, these nanoparticles were incorporated into cement mortar for evaluating compressive strength, gel/space ratio, portlandite quantification, C-S-H quantification and chloride diffusion. Approximately, 27 and 37 % enhancement in compressive strength was observed using colloidal and powdered-NS, respectively, whereas the same was up to 19 % only when silica fume was used. Gel/space ratio was also determined on the basis of degree of hydration of cement mortar and it increases linearly with the compressive strength. Furthermore, DTG results revealed that lime consumption capacity of powdered-NS is significantly higher than colloidal-NS, which results in the formation of additional calcium-silicate-hydrate (C-S-H). Chloride penetration studies revealed that the powdered-NS significantly reduces the ingress of chloride ion as the microstructure is considerably improved by incorporating into cement mortar.

Comparison of Enzyme Activity and Micronutrient Content in Powdered Raw Meal and Powdered Processed Meal

  • Chang, Hyun-Ki;Kang, Byung-Sun;Park, Sang-Soon;Lee, Keun-Bo;Han, Myung-Kyu
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.162-165
    • /
    • 2003
  • The enzyme activity and the micronutrient content of powdered raw meal (PRM) and powdered processed meal (PPM) were compared. PRM was made of freeze-dried cereals, fruits, and vegetables. PPM was made of the same materials as PRM, but with heat processing such as steaming, roasting and hot air drying. The activity of $\alpha$-amylase of PRM was higher than that of PPM. However there were no differences of the concentration of proximate components between PRM and PPM. The concentrations of vitamin A, C, folic acid, biotin, calcium, potassium, sodium and iron in PRM were higher than in PPM, but there were no differences in vitamins E, B$_1$, B$_2$, phosphorus and zinc. This research demonstrated that PRM retains greater nutritional value because there is higher enzyme activity and less loss of micronutrients during processing in PRM than in PPM.

Adsorption Characteristics of Natural Powdered Oil Absorbent for Marine Oil Pollution (해양오염제거용 천연분말상 유흉착재의 흡착 특성에 관한 연구)

  • 김인수;이진석;김동근;고성정
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • The amount of petroleum consumption has been Increased according to the industrialization and It leads to the increase of the possibility of marine oil pollution. In Korea, some countermeasures including oil skimmer, gelling agent and herding agent of oil have been used for the remediation of the pollution. However, most of them have lets of shortcomings in the application under in-situ condition, because they are sensitive to the situation such as geographical feature, the wind and the tide. In reported literature, the natural powdered oil absorbent which is made of peat moss is an effective mean to clean spilled oil from lake or coast. However, the peat moss is a natural resource which is only Produced from a specific cold weather are like Canada. This indicates that the alternative materials which is readily obtained from everywhere are needed for powdered oil absorbent. Therefore. in the study, same natural materials including pine leaves and straw are tested as the alternative materials for the absorbent. The raw materials were dried and treated by heat at various temperature during several Periods and then. shattered by a grain cracking machine. The oil sorption capacity of the prepared materials was compared according to the methods of heat treatment and their sizes. The proportion of hydrogen cyanide to combustion of the absorbents was measured to confirm their final disposal methods. The biodegradability test of the absorbents was carried our to evaluate possibility of a side pollution in the coast. In was found that the heat treatment of pine leaves enhanced the capacity of oil sorption and decreased the water sorption. The maximum oil sorption was observed for the material treated at 18$0^{\circ}C$for 60 min. The amount of hydrogen cyanide from the combustion were 0.09ml/g, 0.07ml/g for pine leaves and straw respectively meaning that the final disposal by combustion might be feasible. The amount or organic carbon extracted from pine leaves during 7 days was up to 0.015g organic carbon from one gram of pine leaves. but the degradation was as fast as for glucose. It is concluded that the pine leaves can be served as a good raw material for the powdered oil absorbent like peat moss.

  • PDF

Development of Concrete Materials Using Powdered Waste Glasses (폐유리 분말을 이용한 콘크리트 제품 개발)

  • 서동훈;김광기;조상영;박선길;박병근;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1065-1070
    • /
    • 2001
  • The present age, it has been often reported that recycling of wasted glasses should be a great topic in related business circles. For the enviromental reasons, a public institution are looking for the ways of recycling these waste glasses. Consequently, the purpose of this research is to recycle crushed and powdered waste glasses by substituting for the cement in mortar and concrete. First of all, the optimum replacement ratio of Powdered Waste Glasses(PWG) can be obtained from the pilot test results. Secondary, we make advances in recycling of waste glasses as recycled to make secondary concrete products. So, we manufactured concrete brick and block contained powdered waste glasses by through mortar pilot test.

  • PDF