• 제목/요약/키워드: powder metallurgy applications

검색결과 209건 처리시간 0.029초

Tungsten/Copper Functionally Graded Materials : Possible Applications and Processing through the Powder Metallurgy Route

  • Ozer, O.;Missiaen, J.M.;Pascal, C.;Lay, S.;Chaix, J.M.;Mitteau, R.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.83-84
    • /
    • 2006
  • Processing of W-Cu graded materials from attritor-milled W-CuO mixtures is described. The powder reduction steps are investigated by TG and XRD analyses and by microstructural observations (SEM, TEM). Sintering of reduced powder with different compositions is analysed by dilatometry. Sintering behaviour of the graded component processed by co-compaction of a 10/20/30wt%Cu multi-layer material is briefly discussed. Liquid Cu migration is observed and smooths the composition gradient. Perspectives to control this migration are discussed.

  • PDF

Powder Metallurgy for Light Weight and Ultra-Light Weight Materials

  • Kieback, B.;Stephani, G.;Weiβgarber, T.;Schubert, T.;Waag, U.;Bohm, A.;Anderson, O.;Gohler, H.;Reinfried, M.
    • 한국분말재료학회지
    • /
    • 제10권6호
    • /
    • pp.383-389
    • /
    • 2003
  • As in other areas of materials technology, the tendency towards light weight constructions becomes more and more important also for powder metallurgy. The development is mainly driven by the automotive industry looking for mass reduction of vehicles as a major factor for fuel economy. Powder metallurgy has to offer a number of interesting areas including the development of sintered materials of light metals. PM aluminium alloys with improved properties are on the way to replace ferrous pars. For high temperature applications in the engine, titanium aluminide based materials offer a great potential, e.g. for exhaust valves. The PM route using elemental powders and reactions sintering is considered to be a cost effective way for net shape parts production. Furthermore it is expected that lower costs for titanium raw materials coming from metallurgical activities will offer new chances for sintered parts with titanium alloys. The field of cellular metals expands with the hollow sphere technique, that can provide materials of many metals and alloys with a great flexibility in structure modifications. These structures are expected to be used in improving the safety (crash absoption) and noise reduction in cars in the near future and offer great potential for many other applications.

Advanced Powder Processing Techniques of Ti Alloy Powders for Medical and Aerospace Applications

  • Miura, Hideshi
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.323-331
    • /
    • 2013
  • In this paper, two kinds of advanced powder processing techniques Metal Injection Molding (MIM) and Direct Laser Forming (DLF) are introduced to fabricate complex shaped Ti alloy parts which are widely used for medical and aerospace applications. The MIM process is used to strengthen Ti-6Al-4V alloy compacts by addition of fine Mo, Fe or Cr powders. Enhanced tensile strength of 1030 MPa with 15.1% elongation was obtained by an addition of 4 mass%Cr because of the microstructural modification and also the solution strengthening in beta phase. However, their fatigue strength was lower compared to wrought materials, but was improved by HIP. Subsequently, the effect of feeding layer height (FLH) on the characteristics of the DLF compacts was investigated. In the case of 100 ${\mu}m$ FLH, surface roughness was improved and nearly full density (99.8%) was obtained. Also, tensile strength of 1080 MPa was obtained, which is higher than the ASTM value.

용액기반 투명전극 분말 재료 연구 동향 (Research Trends in Powder Materials for Solution-based Transparent Conducting Electrode)

  • 구본율;안효진
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.153-163
    • /
    • 2017
  • Transparent conducting electrodes (TCEs) are attracting considerable attention as an important component for emerging optoelectronic applications such as liquid crystal displays, touch panels, and solar cells owing to their attractive combination of low resistivity (<$10^{-3}{\Omega}cm$) and high transparency (>80%) in the visible region. The solution-based process has unique properties of an easy fabrication procedure, scalability, and low cost compared to the conventional vacuum-based process and may prove to be a useful process for fabricating TCEs for future optoelectronic applications demanding large scale and flexibility. In this paper, we focus on the introduction of a solution-based process for TCEs. In addition, we consider the powder materials used to fabricate solution-based TCEs and strategies to improve their transparent conducting properties.

Effects of Hydrogen Reduction in Microstructure, Mechanical and Thermoelectric Properties of Gas Atomized n-type Bi2Te2.7 Se0.3 Material

  • Rimal, Pradip;Yoon, Sang-Min;Kim, Eun-Bin;Lee, Chul-Hee;Hong, Soon-Jik
    • 한국분말재료학회지
    • /
    • 제23권2호
    • /
    • pp.126-131
    • /
    • 2016
  • The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type $Bi_2Te_{2.7}Se_{0.3}$ material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at $360^{\circ}C$. Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.

분말야금법으로 제조한 하모닉 구조재료의 신장플랜지 가공성 (Stretch-Flangeability of Harmonic Structure Material Manufactured by Powder Metallurgy Method)

  • 윤재익;이학현;박형근;;김형섭
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.128-132
    • /
    • 2017
  • Harmonic structure materials are materials with a core-shell structure having a shell with a small grain size and a core with a relatively large grain size. They are in the spotlight because their mechanical properties reportedly feature strength similar to that of a sintered powder with a fine grain size and elongation similar to that of a sintered powder with a coarse grain size at the same time. In this study, the tensile properties, microstructure, and stretch-flangeability of harmonic structure SUS304L made using powder metallurgy are investigated to check its suitability for automotive applications. The harmonic powders are made by mechanical milling and sintered using a spark plasma sintering method at 1173 K and a pressure of 50 MPa in a cylindrical die. The sintered powders of SUS304L having harmonic structure (harmonic SUS304L) exhibit excellent tensile properties compared with sintered powders of SUS304L having homogeneous microstructure. In addition, the harmonic SUS304L has excellent stretch-flangeability compared with commercial advanced high-strength steels (AHSSs) at a similar strength grade. Thus, the harmonic SUS304L is more suitable for automotive applications than conventional AHSSs because it exhibits both excellent tensile properties and stretch-flangeability.

Development of Titanium Powder Injection Molding: Rheological and Thermal Analyses

  • Wu, Yunxin;Park, Seong-Jin;Heaney, Donald F.;Zou, Xin;Gai, Guosheng;Kwon, Young-Sam;German, Randall M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.227-228
    • /
    • 2006
  • Powder injection molding (PIM) is a suitable technology for the fabrication of complex shape titanium and its alloys, and has a great potential in many applications. This paper dealt with the injection molding of hydride dehydrogenization (HDH) titanium powder, spheroidized HDH titanium powder and gas atomized titanium powder. Rheological and thermalgravimetric behaviors were compared between the feedstocks of the three powders, and a tentative application of Ti PIM to eye frame temple and bridge was briefed.

  • PDF

Electrochemical synthesis of nanosized hydroxyapatite/graphene composite powder

  • Vesna, Miskovic-Stankovic;Sanja, Erakovic;Ana, Jankovic;Maja, Vukasinovic-Sekulic;Miodrag, Mitric;Jung, Young Chan;Park, Soo Jin;Rhee, Kyong Yop
    • Carbon letters
    • /
    • 제16권4호
    • /
    • pp.233-240
    • /
    • 2015
  • Electrochemical synthesis was employed to prepare a novel hydroxyapatite/graphene (HAP/Gr) composite powder suitable for medical applications as a hard tissue implant (scaffold). The synthesis was performed in a homogeneous dispersion containing Na2H2EDTA·2H2O, NaH2PO4 and CaCl2 with a Ca/EDTA/PO43− concentration ratio of 0.25/0.25/0.15M, along with 0.01 wt% added graphene nanosheets, at a current density of 137 mA cm−2 and pH value of 9.0. The field emission scanning electron microscopy and transmission electron microscopy observations of the composite HAP/Gr powder indicated that nanosized hydroxyapatite particles were uniformly placed in the graphene overlay. Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction confirmed graphene incorporation in the HAP/Gr powder. The electrochemically prepared HAP/Gr composite powder exhibited slight antibacterial effect against the growth of the bacterial strain Staphylococcus aureus.

Properties and Application of Metal Sulfide Powder

  • Park, Dong-Kyu;Bae, Sung-Yeal;Ahn, In-Shup;Jung, Kwang-Chul
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.918-920
    • /
    • 2006
  • Metal sulfide powders such as MnS, $MoS_2$ and FeS are simply used to the machinery processing improvement agent and solid lubricant in powder metallurgy industrial. And then, metal sulfide powders have received relatively little attention from powder metallurgy. Recently, the portable machine is one of the important interfaces between human or human and electronic machine. With the increase of the intelligent activity, the social and industrial demands for information display device and power source are increasing. The transition metal sulfide materials (FeS, ZnS) have received considerable attention due to the large variety of its electric, optical and magnetic properties. Among the metal sulfide, $FeS_2$ is appealing superior material for applications in $Li-2^{nd}$ battery because of high capacity. ZnS is also a famous phosphor material with various luminescence properties, such as photoluminescence (PL) and electroluminescence (EL). So generally used in the fields of display, sensors and laser. Metal sulfide materials, therefore, are provided for most widely application in all industries. In recent years, material researchers have become increasingly interested in studying with synthesis of metal sulfide.

  • PDF

Carbon-Nanofiber Reinforced Cu Composites Prepared by Powder Metallurgy

  • Weidmueller, H.;Weissgaerber, T.;Hutsch, T.;Huenert, R.;Schmitt, T.;Mauthner, K.;Schulz-Harder, S.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.321-326
    • /
    • 2006
  • Electronic packaging involves interconnecting, powering, protecting, and cooling of semiconductor circuits fur the use in a variety of microelectronic applications. For microelectronic circuits, the main type of failure is thermal fatigue, owing to the different thermal expansion coefficients of semiconductor chips and packaging materials. Therefore, the search for matched coefficients of thermal expansion (CTE) of packaging materials in combination with a high thermal conductivity is the main task for developments of heat sink materials electronics, and good mechanical properties are also required. The aim of this work is to develop copper matrix composites reinforced with carbon nanofibers. The advantages of carbon nanofibers, especially the good thermal conductivity, are utlized to obtain a composite material having a thermal conductivity higher than 400 W/mK. The main challenge is to obtain a homogeneous dispersion of carbon nanofibers in copper. In this paper, a technology for obtaining a homogeneous mixture of copper and nanofibers will be presented and the microstructure and properties of consolidated samples will be discussed. In order to improve the bonding strength between copper and nanofibers, different alloying elements were added. The microstructure and the properties will be presented and the influence of interface modification will be discussed.