DOI QR코드

DOI QR Code

Stretch-Flangeability of Harmonic Structure Material Manufactured by Powder Metallurgy Method

분말야금법으로 제조한 하모닉 구조재료의 신장플랜지 가공성

  • Yoon, Jae Ik (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Hak Hyeon (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Park, Hyung Keun (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Ameyama, Kei (Department of Mechanical Engineering, Faculty of Science and Engineering, Ritsumeikan University) ;
  • Kim, Hyoung Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
  • 윤재익 (포항공과대학교 신소재공학과) ;
  • 이학현 (포항공과대학교 신소재공학과) ;
  • 박형근 (포항공과대학교 신소재공학과) ;
  • ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2017.01.06
  • Accepted : 2017.02.01
  • Published : 2017.04.28

Abstract

Harmonic structure materials are materials with a core-shell structure having a shell with a small grain size and a core with a relatively large grain size. They are in the spotlight because their mechanical properties reportedly feature strength similar to that of a sintered powder with a fine grain size and elongation similar to that of a sintered powder with a coarse grain size at the same time. In this study, the tensile properties, microstructure, and stretch-flangeability of harmonic structure SUS304L made using powder metallurgy are investigated to check its suitability for automotive applications. The harmonic powders are made by mechanical milling and sintered using a spark plasma sintering method at 1173 K and a pressure of 50 MPa in a cylindrical die. The sintered powders of SUS304L having harmonic structure (harmonic SUS304L) exhibit excellent tensile properties compared with sintered powders of SUS304L having homogeneous microstructure. In addition, the harmonic SUS304L has excellent stretch-flangeability compared with commercial advanced high-strength steels (AHSSs) at a similar strength grade. Thus, the harmonic SUS304L is more suitable for automotive applications than conventional AHSSs because it exhibits both excellent tensile properties and stretch-flangeability.

Keywords

References

  1. O. Kwon, K. Y. Lee, G. S. Kim and K. G. Chin: Mater. Sci. Forum, 638 (2010) 136.
  2. R. Kuziak, R. Kawalla and S. Waengler: Arch. Civ. Mech. Eng., 8 (2008) 103. https://doi.org/10.1016/S1644-9665(12)60197-6
  3. A. Mayyas, A. Qattawi, M. Omar and D. Shan: Renew. Sustainable Energy Rev., 16 (2012) 1845. https://doi.org/10.1016/j.rser.2012.01.012
  4. M. Ma and H. Yi: Lightweight Car Body and Application of High Strength Steels (1st Ed.), Springer, Berlin Heidelberg (2011) 187.
  5. N. Fonstein: Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties (1st Ed.), Springer, Switzerland (2015) 5.
  6. Y. Mazaheri, A. Kermanpur and A. Najafizadeh: Mater. Sci. Eng. A, 619 (2014) 1. https://doi.org/10.1016/j.msea.2014.09.058
  7. Z. C. Li, H. Ding and Z. H. Cai: Mater. Sci. Eng. A, 639 (2015) 559. https://doi.org/10.1016/j.msea.2015.05.061
  8. B. C. D. Cooman, O. Kwon and K. G. Chin: Mater. Sci. Technol., 28 (2012) 513. https://doi.org/10.1179/1743284711Y.0000000095
  9. S. S. Sohn, H. Song, B. C. Suh, J. H. Kwak, B. J. Lee, N. J. Kim and S. Lee: Acta Mater., 96 (2015) 301. https://doi.org/10.1016/j.actamat.2015.06.024
  10. S. S. Sohn, B. J. Lee, S. Lee and J. H. Kwak: Met. Mater. Int., 21 (2015) 43. https://doi.org/10.1007/s12540-015-1006-8
  11. A. Zargaran, H. S. Kim, J. H. Kwak and N. J. Kim: Met. Mater. Int., 21 (2015) 79. https://doi.org/10.1007/s12540-015-1009-5
  12. K. Kamibayashi, Y. Tanabe, Y. Takemoto, I. Shimizu and T. Senuma: ISIJ Int., 52 (2012) 151. https://doi.org/10.2355/isijinternational.52.151
  13. J. Lee, S. J. Lee and B. C. D. Cooman: Mater. Sci. Eng. A, 536 (2012) 231. https://doi.org/10.1016/j.msea.2012.01.003
  14. J. Lee, M. Lee, H. Do, S. Kim and N. Kang: Korean J. Met. Mater., 52 (2014) 113. https://doi.org/10.3365/KJMM.2014.52.2.113
  15. M. Chen and D. J. Zhou: Great Designs in Steel Seminar, autosteel, (2008).
  16. Z. Zhang, S. K. Vajpai, D. Orlov and K. Ameyama: Mater. Sci. Eng. A, 598 (2014) 106. https://doi.org/10.1016/j.msea.2014.01.023
  17. R. Zheng, Z. Zhang, M. Nakatani, M. Ota, X. Chen, C. Ma and K. Ameyama: Mater. Sci. Eng. A, 674 (2016) 212. https://doi.org/10.1016/j.msea.2016.07.048
  18. ASTM E8/E8M:15a, Standard Test Methods for Tension Testing of Metallic Materials.
  19. ISO/TS 16630, Metallic Materials-Method of Hole Expanding Test.
  20. J. I. Yoon, J. Jung, S. H. Joo, T. J. Song, K. G. Chin, M. H. Seo, S. J. Kim, S. Lee and H. S. Kim: Mater. Lett., 180 (2016) 322. https://doi.org/10.1016/j.matlet.2016.05.145