Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.4.233

Electrochemical synthesis of nanosized hydroxyapatite/graphene composite powder  

Vesna, Miskovic-Stankovic (Faculty of Technology and Metallurgy, University of Belgrade)
Sanja, Erakovic (Faculty of Technology and Metallurgy, University of Belgrade)
Ana, Jankovic (Faculty of Technology and Metallurgy, University of Belgrade)
Maja, Vukasinovic-Sekulic (Faculty of Technology and Metallurgy, University of Belgrade)
Miodrag, Mitric (Vinca Institute of Nuclear Sciences, University of Belgrade)
Jung, Young Chan (Korea Railroad Research Institute)
Park, Soo Jin (Department of Chemistry, Inha University)
Rhee, Kyong Yop (Department of Mechanical Engineering, Kyung Hee University)
Publication Information
Carbon letters / v.16, no.4, 2015 , pp. 233-240 More about this Journal
Abstract
Electrochemical synthesis was employed to prepare a novel hydroxyapatite/graphene (HAP/Gr) composite powder suitable for medical applications as a hard tissue implant (scaffold). The synthesis was performed in a homogeneous dispersion containing Na2H2EDTA·2H2O, NaH2PO4 and CaCl2 with a Ca/EDTA/PO43− concentration ratio of 0.25/0.25/0.15M, along with 0.01 wt% added graphene nanosheets, at a current density of 137 mA cm−2 and pH value of 9.0. The field emission scanning electron microscopy and transmission electron microscopy observations of the composite HAP/Gr powder indicated that nanosized hydroxyapatite particles were uniformly placed in the graphene overlay. Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction confirmed graphene incorporation in the HAP/Gr powder. The electrochemically prepared HAP/Gr composite powder exhibited slight antibacterial effect against the growth of the bacterial strain Staphylococcus aureus.
Keywords
graphene; hydroxyapatite; electrochemical synthesis; composites; antibacterial activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bogdanoviciene I, Beganskiene A, Tõnsuaadu K, Glaser J, Meyer HJ, Kareiva A. Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol–gel processing. Mater Res Bull, 41, 1754 (2006). http://dx.doi.org/10.1016/j.materresbull.2006.02.016.   DOI
2 Das S, Singh S, Singh V, Joung D, Dowding JM, Reid D, Anderson J, Zhai L, Khondaker SI, Self WT, Seal S. Oxygenated functional group density on graphene oxide: its effect on cell toxicity. Part Part Syst Charact, 30, 148 (2013). http://dx.doi.org/10.1002/ppsc.201200066.   DOI
3 Kanchana P, Sekar C. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid. Mater Sci Eng C, 42, 601 (2014). http://dx.doi.org/10.1016/j.msec.2014.05.072.   DOI
4 Shruthi TK, Ilayaraja N, Jeyakumar D, Sathish M. Functionalization of graphene with nitrogen using ethylenediaminetetraacetic acid and their electrochemical energy storage properties. RSC Adv, 4, 24248 (2014). http://dx.doi.org/10.1039/C4RA02756F.   DOI
5 Janković, A; Eraković, S; Vukašinović-Sekulić, M; Mišković-Stanković V, Park SJ, Rhee KY. Graphene-based antibacterial composite coatings electrodeposited on titanium for biomedical applications. Prog Org Coat, 83, 1 (2015). http://dx.doi.org/10.1016/j.porgcoat.2015.01.019.   DOI
6 Liu H, Xi P, Xie G, Shi Y, Hou F, Huang L, Chen F, Zeng Z, Shao C, Wang J. Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J Phys ChemC, 116, 3334 (2012). http://dx.doi.org/10.1021/jp2102226.   DOI
7 Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 11, 2345 (2010). http://dx.doi.org/10.1021/bm100470q.   DOI
8 Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N. Fracture and fatigue in graphene nanocomposites. Small, 6, 179 (2010). http://dx.doi.org/10.1002/smll.200901480.   DOI
9 Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A. Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv Mater Sci Eng, 2013, 923403 (2013). http://dx.doi.org/10.1155/2013/923403.   DOI
10 Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater, 19, 2297 (2009). http://dx.doi.org/10.1002/adfm.200801776.   DOI
11 Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C. Graphene-based antibacterial paper. ACS Nano, 4, 4317 (2010). http://dx.doi.org/10.1021/nn101097v.   DOI
12 Oyefusi A, Olanipekun O, Neelgund GM, Peterson D, Stone JM,Williams E, Carson L, Regisford G, Oki A. Hydroxy apatite grafted carbon nanotubes and graphene nanosheets: promising bone implant materials. Spectrochim Acta A Mol Biomol Spectrosc, 132, 410 (2014). http://dx.doi.org/10.1016/j.saa.2014.04.004.   DOI
13 Baradaran S, Moghaddam E, Basirun WJ, Mehrali M, Sookhakian M, Hamdi M, Nakhaei Moghaddam MR, Alias Y. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon, 69, 32 (2014). http://dx.doi.org/10.1016/j.carbon.2013.11.054.   DOI
14 Neelgund GM, Oki A, Luo Z. In situ deposition of hydroxy apatiteon graphene nanosheets. Mater Res Bull, 48, 175 (2013). http://dx.doi.org/10.1016/j.materresbull.2012.08.077.   DOI
15 Li M, Liu Q, Jia Z, Xu X, Shi Y, Cheng Y, Zheng Y, Xi T, Wei S. Electrophoretic deposition and electrochemical behavior ofnovel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings. Appl Surf Sci, 284, 804 (2013). http://dx.doi.org/10.1016/j.apsusc.2013.08.012.   DOI
16 Kopelevich Y, Esquinazi P. Graphene physics in graphite. Adv Mater, 19, 4559 (2007). http://dx.doi.org/10.1002/adma.200702051.   DOI
17 Lahiri D, Ghosh S, Agarwal A. Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review. Mater Sci Eng C, 32, 1727 (2012). http://dx.doi.org/10.1016/j.msec.2012.05.010.   DOI
18 Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol, 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58.   DOI
19 Liu Y, Huang J, Li H. Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J Mater ChemB, 1, 1826 (2013). http://dx.doi.org/10.1039/C3TB00531C.   DOI
20 Fabbri P, Valentini L, Hum J, Detsch R, Boccaccini AR. 45S5Bioglass®-derived scaffolds coated with organic-inorganic hybrids containing graphene. Mater Sci Eng C, 33, 3592 (2013). http://dx.doi.org/10.1016/j.msec.2013.04.028.   DOI
21 Kung KC, Lee TM, Lui TS. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation. J Alloys Compd, 508, 384 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.08.057.   DOI
22 Rath PC, Besra L, Singh BP, Bhattacharjee S. Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition:characterization and corrosion studies. Ceram Int, 38, 3209 (2012). http://dx.doi.org/10.1016/j.ceramint.2011.12.026.   DOI
23 Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog Mater Sci, 54, 397 (2009). http://dx.doi.org/10.1016/j.pmatsci.2008.06.004.   DOI
24 Djošić MS, Mišković-Stanković VB, Milonjić S, Kačarević-Popović ZM, Bibić N, Stojanović J. Electrochemical synthesis and characterization of hydroxyapatite powders. Mater Chem Phys, 111, 137 (2008). http://dx.doi.org/10.1016/j.matchemphys.2008.03.045.   DOI
25 Wu CC, Huang ST, Tseng TW, Rao QL, Lin HC. FT-IR and XRD investigations on sintered fluoridated hydroxy apatite composites. J Mol Struct, 979, 72 (2010). http://dx.doi.org/10.1016/j.molstruc.2010.06.003.   DOI
26 Ren Y, Fan G, Wang C. Aqueous hydrodechlorination of 4-chlorophenol over an Rh/reduced graphene oxide synthesized by a facile one-pot solvothermal process under mild conditions. J Hazard Mater, 274, 32 (2014). http://dx.doi.org/10.1016/j.jhazmat.2014.04.005.   DOI
27 Fujishiro Y, Fujimoto A, Sato T, Okuwaki A. Coating of hydroxy-apatite on titanium plates using thermal dissociation of calcium-EDTA chelate complex in phosphate solutions under hydrothermalconditions. J Colloid Interface Sci, 173, 119 (1995). http://dx.doi.org/10.1006/jcis.1995.1304.   DOI
28 Ju HM, Choi SH, Huh SH. X-ray diffraction patterns of thermally-reduced graphenes. J Korean Phys Soc, 57, 1649 (2010). http://dx.doi.org/10.3938/jkps.57.1649.   DOI
29 Sharma G, Gosavi SW. Thermoluminescence properties of graphene–nano ZnS composite. J Lumin, 145, 557 (2014). http://dx.doi.org/10.1016/j.jlumin.2013.08.021.   DOI
30 Cheary RW, Coelho A. A fundamental parameters approach to X-ray line-profile fitting. J Appl Crystallogr, 25, 109 (1992). http://dx.doi.org/10.1107/S0021889891010804.   DOI
31 Mostafa NY. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater Chem Phys, 94, 333 (2005). http://dx.doi.org/10.1016/j.matchemphys.2005.05.011.   DOI
32 Kim S, Ku SH, Lim SY, Kim JH, Park CB. Graphene-biomineral hybrid materials. Adv Mater, 23, 2009 (2011). http://dx.doi.org/10.1002/adma.201100010.   DOI
33 Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol, 47, 1 (2010). http://dx.doi.org/10.1016/j.ijbiomac.2010.03.015.   DOI
34 Janković A, Eraković S, Mitrić M, Matić IZ, Juranić ZD, Tsui GCP, Tang C, Mišković-Stanković V, Rhee KY, Park SJ. Bioactive hydroxyapatite/graphene composite coating and its corrosionstability in simulated body fluid. J Alloys Compd, 624, 148 (2015). http://dx.doi.org/10.1016/j.jallcom.2014.11.078.   DOI
35 Zhang L, Liu W, Yue C, Zhang T, Li P, Xing Z, Chen Y. A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon, 61, 105 (2013). http://dx.doi.org/10.1016/j.carbon.2013.04.074.   DOI
36 Chavez-Valdez A, Shaffer MSP, Boccaccini AR. Applications of graphene electrophoretic deposition. J Phys Chem B,Chavez-Valdez A; Shaffer MSP; Boccaccini AR 117, 1502 (2013). http://dx.doi.org/10.1021/jp3064917.   DOI
37 Wang Z, Wei P, Qian Y, Liu J. The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos Part B Eng, 60, 341 (2014). http://dx.doi.org/10.1016/j.compositesb.2013.12.033.   DOI
38 Uddin ME, Layek RK, Kim NH, Hui D, Lee JH. Preparation and properties of reduced graphene oxide/polyacrylonitrile nanocomposites using polyvinyl phenol. Compos Part B Eng, 80, 238 (2015). http://dx.doi.org/10.1016/j.compositesb.2015.06.009.   DOI
39 Nguyen VH, Kim BK, Jo YL, Shim JJ. Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites. J Supercrit Fluids, 72, 28 (2012). http://dx.doi.org/10.1016/j.supflu.2012.08.005.   DOI
40 Ouyang Y, Chen L. Surface-enhanced Raman scattering studies of few-layer graphene on silver substrate with 514 nm excitation. J Mol Struct, 992, 48 (2011). http://dx.doi.org/10.1016/j.molstruc.2011.02.030.   DOI
41 Zanin H, Saito E, Marciano FR, Ceragioli HJ, Granato AEC, Porcionatto M, Lobo AO. Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications. J Mater Chem B Biol Med, 1, 4947 (2013). http://dx.doi.org/10.1039/C3TB20550A.   DOI
42 de Faria AF, Martinez DST, Meira SMM, de Moraes ACM, Brandelli A, Filho AGS, Alves OL. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B Biointerfaces, 113, 115 (2014). http://dx.doi.org/10.1016/j.colsurfb.2013.08.006.   DOI
43 Akhavan O, Ghaderi E, Esfandiar A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J PhysChem B, 115, 6279 (2011). http://dx.doi.org/10.1021/jp200686k.   DOI
44 Santos CM, Mangadlao J, Ahmed F, Leon A, Advincula RC, Rodrigues DF. Graphene nano composite for biomedical applications:fabrication, antimicrobial and cytotoxic investigations. Nanotechnology, 23, 395101 (2012). http://dx.doi.org/10.1088/0957-4484/23/39/395101.   DOI
45 Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano, 5, 6971 (2011). http://dx.doi.org/10.1021/nn202451x.   DOI
46 Bose S, Drzal LT. Functionalization of graphene nanoplatelets using sugar azide for graphene/epoxy nanocomposites. Carbon Lett,16, 101 (2015). http://dx.doi.org/ 10.5714/CL.2015.16.2.101.   DOI
47 Kim M, Kim Y, Baeck SH, Shim SE. Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites. Carbon Lett, 16, 34 (2015). http://dx.doi.org/10.5714/CL.2015.16.1.034.   DOI