Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.2.153

Research Trends in Powder Materials for Solution-based Transparent Conducting Electrode  

Koo, Bon-Ryul (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.24, no.2, 2017 , pp. 153-163 More about this Journal
Abstract
Transparent conducting electrodes (TCEs) are attracting considerable attention as an important component for emerging optoelectronic applications such as liquid crystal displays, touch panels, and solar cells owing to their attractive combination of low resistivity (<$10^{-3}{\Omega}cm$) and high transparency (>80%) in the visible region. The solution-based process has unique properties of an easy fabrication procedure, scalability, and low cost compared to the conventional vacuum-based process and may prove to be a useful process for fabricating TCEs for future optoelectronic applications demanding large scale and flexibility. In this paper, we focus on the introduction of a solution-based process for TCEs. In addition, we consider the powder materials used to fabricate solution-based TCEs and strategies to improve their transparent conducting properties.
Keywords
Transparent conducting electrodes; Solution process; Electrical property; Optical property; Nanostructure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. S. Hecht, A. M. Heintz, R. Lee, L. Hu, B. Moore, C. Cucksey and S. Risser: Nanotechnology, 22 (2011) 169501.   DOI
2 D. S. Hecht, L. Hu and G. Irvin: Adv. Mater., 23 (2011) 1482.   DOI
3 V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner and Y. Yang: Nano Lett., 9 (2009) 1949.   DOI
4 Y. Ahn, Y. Jeong and Y. Lee: ACS Appl. Mater. Interfaces, 4 (2012) 6410.   DOI
5 B. R. Koo, J. W. Bae and H. J. Ahn: Ceram. Int., 43 (2017) 6124.   DOI
6 B. R. Koo and H. J. Ahn: Ceram. Int., 42 (2016) 509.   DOI
7 B. R. Koo and H. J. Ahn: Ceram. Int., 40 (2014) 4375.   DOI
8 D. S. Hecht, L. Hu and G. Irvin: Adv. Mater., 23 (2011) 1482.   DOI
9 J. W. Bae, B. R. Koo, H. R. An and H. J. Ahn: Ceram. Int., 41 (2015) 14668.   DOI
10 H. R. An, S. H. Baek, I. K. Park and H. J. Ahn: Kor. J. Mater. Res., 23 (2013) 469.   DOI
11 K. Ellmer: Nature Photon., 6 (2012) 809.   DOI
12 R. M. Pasquarelli, D. S. Ginley and R. O'Hayre: Chem. Soc. Rev., 40 (2011) 5406.   DOI
13 S. M. Bergin, Y. H. Chen, A. R. Rathmell, P. Charbonneau, Z. Y. Li and B. J. Wiley: Nanoscale, 4 (2012) 1996.   DOI
14 C. C. Wu, C. I. Wu, J. C. Sturm and A. Kahn: Appl. Phys. Lett., 70 (1997) 1348.   DOI
15 A. Kim. Y. Won, K. Woo, C. H. Kim and J. Moon: ACS nano, 7 (2013) 1081.   DOI
16 S. M. Selbach, G. Wang, M. A. Einarsrud and T. Grande: J. Am. Ceram. Soc., 90 (2007) 2649.   DOI
17 M. Okuya, N. Ito and K. Shiozaki: Thin Solid Films, 515 (2007) 8656.   DOI
18 D. Lu, Y. Wu, J. Guo, G. Lu, Y. Wang and J. Shen: Mater. Sci. Eng. B, 97 (2003) 141.   DOI
19 W. M. Tsang, F. L. Wong, M. K. Fung, J. C. Chang, C. S. Lee and S. T. Lee: Thin Solid Films, 517 (2008) 891.   DOI
20 G. Goncalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins and E. Fortunato: Thin Solid Films, 515 (2007) 8562.   DOI
21 B. Y. Oh, M. C. Jeong, D. S. Kim, W. Lee and J. M. Myoung: J. Cryst. Growth, 281 (2005) 475.   DOI
22 D. P. Birnie: J. Mater. Res., 16 (2001) 1145.   DOI
23 H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee and Y. Cui: Nano Lett., 10 (2010) 4242.   DOI
24 Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu and H. Cheng: Langmuir, 29 (2013) 13836.   DOI
25 Z. Chen, X. Qin, T. Zhou, X. Wu, S. Shao, M. Xie and Z. Cui: J. Mater. Chem. C, 3 (2015) 11464.   DOI
26 H. An and H. J. Ahn: Mater. Lett., 81 (2012) 41.   DOI
27 M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour: Adv. Mater., 22 (2010) 673.   DOI
28 K. Nakashima and Y. Kumahara: Vacuum, 66 (2002) 221.   DOI
29 D. M. Lee, J. K. Kim, J. Hao, H. K. Kim, J. S. Yoon, and J. M. Lee: J. Alloy. Compd., 583 (2014) 535.   DOI
30 H. I. Shin, K. H. Kim, T. W. Kim and H. K. Kim: Ceram. Int., 42 (2016) 13983.   DOI
31 Y. Yang, J. L. Wang, L. Liu, Z. H. Wang, J. W. Liu, and S. H. Yu: Nanoscale, 9 (2017) 52.   DOI
32 B. R. Koo and H. J. Ahn: Appl. Phys. Express, 7 (2014) 075002.   DOI
33 J. Wang, J. Jiu, T. Sugahara, S. Nagao, M. Nogi, H. Koga, P. He, K. Suganuma and H. Uchida: ACS Appl. Mater. Interfaces, 7 (2015) 23297.   DOI
34 J. A. Jeong, H. K. Kim and J. Kim: Sol. Energy Mater. Sol. Cells, 125 (2014) 113.   DOI
35 J. A. Jeong and H. K. Kim: Appl. Phys. Lett., 104 (2014) 071906.   DOI
36 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong: Nature, 457 (2009) 706.   DOI