• 제목/요약/키워드: powder metallurgy applications

검색결과 209건 처리시간 0.02초

Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing

  • Jinhee Bae;Seungki Jo ;Kyung Tae Kim
    • 한국분말재료학회지
    • /
    • 제30권4호
    • /
    • pp.318-323
    • /
    • 2023
  • The thermoelectric effect, which converts waste heat into electricity, holds promise as a renewable energy technology. Recently, bismuth telluride (Bi2Te3)-based alloys are being recognized as important materials for practical applications in the temperature range from room temperature to 500 K. However, conventional sintering processes impose limitations on shape-changeable and tailorable Bi2Te3 materials. To overcome these issues, three-dimensional (3D) printing (additive manufacturing) is being adopted. Although some research results have been reported, relatively few studies on 3D printed thermoelectric materials are being carried out. In this study, we utilize extrusion 3D printing to manufacture n-type Bi1.7Sb0.3Te3 (N-BST). The ink is produced without using organic binders, which could negatively influence its thermoelectric properties. Furthermore, we introduce graphene oxide (GO) at the crystal interface to enhance the electrical properties. The formed N-BST composites exhibit significantly improved electrical conductivity and a higher Seebeck coefficient as the GO content increases. Therefore, we propose that the combination of the extrusion 3D printing process (Direct Ink Writing, DIW) and the incorporation of GO into N-BST offers a convenient and effective approach for achieving higher thermoelectric efficiency.

열차폐코팅을 위한 희토류가 저감된 란타눔/가돌리늄 지르코네이트의 상형성 및 열물성 (Phase Formation and Thermo-physical Properties of Lanthanum/Gadolinium Zirconate with Reduced Rare-earth Contents for Thermal Barrier Coatings)

  • 이수진;권창섭;이성민;오윤석;김형태;남산;김성원
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.420-425
    • /
    • 2015
  • Rare-earth zirconates, such as lanthanum zirconates and gadolinium zirconates, have been intensively investigated due to their excellent properties of low thermal conductivity as well as chemical stability at high temperature, which can make these materials ones of the most promising candidates for next-generation thermal barrier coating applications. In this study, three compositions, lanthanum/gadolinium zirconates with reduced rare-earth contents from stoichiometric $RE_2Zr_2O_7$ compositions, are fabricated via solid state reaction as well as sintering at $1600^{\circ}C$ for 4 hrs. The phase formation, microstructure, and thermo-physical properties of three oxide ceramics are examined. In particular, each oxide ceramics exhibits composite structures between pyrochlore and fluorite phases. The potential of lanthanum/gadolinium zirconate ceramics for TBC applications is also discussed.

희토류 저감형 란타눔 지르코네이트(La2O2-ZrO2계) 세라믹스와 열차폐코팅의 제조 및 특성평가 (Fabrication and Characterization of Ceramics and Thermal Barrier Coatings of Lanthanum Zirconate with Reduced Rare-earth Contents in the La2O2-ZrO2 System)

  • 권창섭;이수진;이성민;오윤석;김형태;장병국;김성원
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.413-419
    • /
    • 2015
  • Lanthanum zirconate, $La_2Zr_2O_7$, is one of the most promising candidates for next-generation thermal barrier coating (TBC) applications in high efficient gas turbines due to its low thermal conductivity and chemical stability at high temperature. In this study, bulk specimens and thermal barrier coatings are fabricated via a variety of sintering processes as well as suspension plasma spray in lanthanum zirconates with reduced rare-earth contents. The phase formation, microstructure, and thermo-physical properties of these oxide ceramics and coatings are examined. In particular, lanthanum zirconates with reduced rare-earth contents in a $La_2Zr_2O_7-4YSZ$ composite system exhibit a single phase of fluorite or pyrochlore after fabricated by suspension plasma spray or spark plasma sintering. The potential of lanthanum zirconate ceramics for TBC applications is also discussed.

조합 합성 시스템의 미세유체반응기를 이용한 CdSe 양자점 합성 및 분석 (Synthesis and analysis CdSe Quantum dot with a Microfluidic Reactor Using a Combinatorial Synthesis System)

  • 홍명환;이덕희;강이승;이찬기;김범성;김남훈
    • 한국분말재료학회지
    • /
    • 제23권2호
    • /
    • pp.143-148
    • /
    • 2016
  • A microfluidic reactor with computer-controlled programmable isocratic pumps and online detectors is employed as a combinatorial synthesis system to synthesize and analyze materials for fabricating CdSe quantum dots for various applications. Four reaction condition parameters, namely, the reaction temperature, reaction time, Cd/Se compositional ratio, and precursor concentration, are combined in synthesis condition sets, and the size of the synthesized CdSe quantum dots is determined for each condition. The average time corresponding to each reaction condition for obtaining the ultraviolet-visible absorbance and photoluminescence spectra is approximately 10 min. Using the data from the combinatorial synthesis system, the effects of the reaction conditions on the synthesized CdSe quantum dots are determined. Further, the data is used to determine the relationships between the reaction conditions and the CdSe particle size. This method should aid in determining and selecting the optimal conditions for synthesizing nanoparticles for diverse applications.

재료 분석에서 전자 에너지 손실 스펙트럼 (EELS)의 원리 및 응용 연구 (Principle and Applications of EELS Spectroscopy in Material Characterizations)

  • 윤상원;김규현;안재평;박종구
    • 한국분말재료학회지
    • /
    • 제14권3호
    • /
    • pp.157-164
    • /
    • 2007
  • 본 고에서는 최근 재료분석에 활발히 응용되고 있는 EELS 분석장비의 원리와 응용 분야 등에 대해 검토하였다. EELS를 이용하여 수행할 수 있는 주요 응용분야로는 원소의 정성 및 정량분석, 원소 및 화학 맴핑, 화학물의 결함구조를 알 수 있는 전자구조(DOS)에 대한 힌트 등이 있으며, 점차 재료의 근본 적인 성질을 추출할 수 강력한 분석기가 되고 있다. 또한 원소를 분석하고 맹핑하는데 걸리는 시간이 수초에서 수분 이하의 시간으로 매우 짧아 전자빔에 의한 재료의 손상을 최소화시킬 수 있는 장점을 갖고 있다. 특히 나노미터 영역의 분말의 경우 원소의 분포가 불균일하고 전자빔에 의하여 쉽게 변형되는 재료 분석에 매우 유용하다. 향후 TEM의 발달과 함께 EELS는 국부적인 영역에서 가장 다양하고 유용한 정보를 추출할 수 있는 분석기로 자리매김할 것으로 기대된다.

산화철 나노 입자의 발열 효과의 제어 (Controlling the Heat Generation Capability of Iron Oxide-Base Nanoparticles)

  • 최진실
    • 한국분말재료학회지
    • /
    • 제28권6호
    • /
    • pp.518-526
    • /
    • 2021
  • This review summarizes the recent progress in iron-oxide-based heat generators. Cancer treatment using magnetic nanoparticles as a heat generator, termed magnetic fluid hyperthermia, is a promising noninvasive approach that has gained significant interest. Most previous studies on improving the hyperthermia effect have focused on the construction of dopant-containing iron oxides. However, their applications in a clinical application can be limited due to extra dopants, and pure iron oxide is the only inorganic material approved by the Food and Drug Administration (FDA). Several factors that influence the heat generation capability of iron-oxide-based nanoparticles are summarized by reviewing recent studies on hyperthermia agents. Thus, our paper will provide the guideline for developing pure iron oxide-based heat generators with high heat dissipation capabilities.

Research Trends in Electromagnetic Shielding using MXene-based Composite Materials

  • Siyeon Kim;Jongmin Byun
    • 한국분말재료학회지
    • /
    • 제31권1호
    • /
    • pp.57-76
    • /
    • 2024
  • Recent advancements in electronic devices and wireless communication technologies, particularly the rise of 5G, have raised concerns about the escalating electromagnetic pollution and its potential adverse impacts on human health and electronics. As a result, the demand for effective electromagnetic interference (EMI) shielding materials has grown significantly. Traditional materials face limitations in providing optimal solutions owing to inadequacy and low performance due to small thickness. MXene-based composite materials have emerged as promising candidates in this context owing to their exceptional electrical properties, high conductivity, and superior EMI shielding efficiency across a broad frequency range. This review examines the recent developments and advantages of MXene-based composite materials in EMI shielding applications, emphasizing their potential to address the challenges posed by electromagnetic pollution and to foster advancements in modern electronics systems and vital technologies.

중엔트로피 합금 기지 위에 적층조형된 스테인리스강과 타이타늄 합금의 접합특성 분석 (Joint Properties of Stainless Steel and Titanium Alloys Additive Manufactured on Medium Entropy Alloys)

  • 박찬웅;;이민규;김정한
    • 한국분말재료학회지
    • /
    • 제26권4호
    • /
    • pp.319-326
    • /
    • 2019
  • Additive manufacturing (AM) is a highly innovative method for joining dissimilar materials for industrial applications. In the present work, AM of STS630 and Ti-6Al-4V powder alloys on medium entropy alloys (MEAs) NiCrCo and NiCrCoMn is studied. The STS630 and Ti64 powders are deposited on the MEAs. Joint delamination and cracks are observed after the deposition of Ti64 on the MEAs, whereas the deposition of STS630 on the MEAs is successful, without any cracks and joint delamination. The microstructure around the fusion zone interface is characterized by scanning electron microscopy and X-ray diffraction. Intermetallic compounds are formed at the interfacial regions of MEA-Ti64 samples. In addition, Vicker's hardness value increased dramatically at the joint interface between MEAs and Ti-6Al-4V compared to that between MEAs and STS630. This result is attributed to the brittle nature of the joint, which can lead to a decrease in the joint strength.

LPBF 공정으로 제조된 Ti-6Al-4V 합금의 밀도와 표면 거칠기 제어를 위한 매개변수 연구 (Parametric Study of Selective Laser Melting Using Ti-6Al-4V Powder Bed for Concurrent Control of Volumetric Density and Surface Roughness)

  • 우정민;김지윤;손용호;이기안
    • 한국분말재료학회지
    • /
    • 제28권5호
    • /
    • pp.410-416
    • /
    • 2021
  • Ti-6Al-4V alloy has a wide range of applications, ranging from turbine blades that require smooth surfaces for aerodynamic purposes to biomedical implants, where a certain surface roughness promotes biomedical compatibility. Therefore, it would be advantageous if the high volumetric density is maintained while controlling the surface roughness during the LPBF of Ti-6Al-4V. In this study, the volumetric energy density is varied by independently changing the laser power and scan speed to document the changes in the relative sample density and surface roughness. The results where the energy density is similar but the process parameters are different are compared. For comparable energy density but higher laser power and scan speed, the relative density remained similar at approximately 99%. However, the surface roughness varies, and the maximum increase rate is approximately 172%. To investigate the cause of the increased surface roughness, a nonlinear finite element heat transfer analysis is performed to compare the maximum temperature, cooling rate, and lifetime of the melt pool with different process parameters.

층상 이중 수산화물 나노물질의 성장 제어기술 연구동향 (Recent Development in Fabrication and Control of Layered-Double Hydroxide Nanostructures)

  • 전찬우;박일규
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.514-522
    • /
    • 2018
  • Layered-double hydroxide (LDH)-based nanostructures offer the two-fold advantage of being active catalysts with incredibly large specific surface areas. As such, they have been studied extensively over the last decade and applied in roles as diverse as light source, catalyst, energy storage mechanism, absorber, and anion exchanger. They exhibit a unique lamellar structure consisting of a wide variety of combinations of metal cations and various anions, which determine their physical and chemical performances, and make them a popular research topic. Many reviewed papers deal with these unique properties, synthetic methods, and applications. Most of them, however, are focused on the form-factor of nanopowder, as well as on the control of morphologies via one-step synthetic methods. LDH nanostructures need to be easy to control and fabricate on rigid substrates such as metals, semiconductors, oxides, and insulators, to facilitate more viable applications of these nanostructures to various solid-state devices. In this review, we explore ways to grow and control the various LDH nanostructures on rigid substrates.