DOI QR코드

DOI QR Code

Synthesis and analysis CdSe Quantum dot with a Microfluidic Reactor Using a Combinatorial Synthesis System

조합 합성 시스템의 미세유체반응기를 이용한 CdSe 양자점 합성 및 분석

  • Hong, Myung Hwan (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Lee, Duk-Hee (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kang, Lee-Seung (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Lee, Chan Gi (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Bum-Sung (Korea Inst. for Rare Metals (KIRAM), Korea Inst. of Industrial Technology (KITECH)) ;
  • Kim, Nam-Hoon (AMTE Co., Ltd.)
  • 홍명환 (고등기술연구원 신소재공정센터) ;
  • 이덕희 (고등기술연구원 신소재공정센터) ;
  • 강이승 (고등기술연구원 신소재공정센터) ;
  • 이찬기 (고등기술연구원 신소재공정센터) ;
  • 김범성 (한국생산기술연구원 희소금속산업기술센터) ;
  • 김남훈 ((주)앰트)
  • Received : 2016.03.25
  • Accepted : 2016.04.08
  • Published : 2016.04.28

Abstract

A microfluidic reactor with computer-controlled programmable isocratic pumps and online detectors is employed as a combinatorial synthesis system to synthesize and analyze materials for fabricating CdSe quantum dots for various applications. Four reaction condition parameters, namely, the reaction temperature, reaction time, Cd/Se compositional ratio, and precursor concentration, are combined in synthesis condition sets, and the size of the synthesized CdSe quantum dots is determined for each condition. The average time corresponding to each reaction condition for obtaining the ultraviolet-visible absorbance and photoluminescence spectra is approximately 10 min. Using the data from the combinatorial synthesis system, the effects of the reaction conditions on the synthesized CdSe quantum dots are determined. Further, the data is used to determine the relationships between the reaction conditions and the CdSe particle size. This method should aid in determining and selecting the optimal conditions for synthesizing nanoparticles for diverse applications.

Keywords

References

  1. K. Kim, H. Lee, J. Ahn and S. Jeong: Appl. Phys. Lett., 101 (2012) 073107. https://doi.org/10.1063/1.4745844
  2. P. Roussignol, D. Ricard, C. Flytzanis and N. Neuroth: Phys. Rev. Lett., 62 (1989) 312. https://doi.org/10.1103/PhysRevLett.62.312
  3. A.W. Lam and T. Y. Ng: Comput. Mater. Sci., 49 (2010) S54. https://doi.org/10.1016/j.commatsci.2010.01.043
  4. D. J. Norris, A. Sacra, C. B. Murray and M. G. Bawendi: Phys. Rev. Lett., 72 (1994) 2612. https://doi.org/10.1103/PhysRevLett.72.2612
  5. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway: Nat. Photonics, 5 (2011) 543. https://doi.org/10.1038/nphoton.2011.171
  6. X. Yang, D. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. Zhao, H. V. Demir and X. W. Sun: Adv. Mater., 24 (2012) 4180. https://doi.org/10.1002/adma.201104990
  7. K. Kim, J. Y. Woo, S. Jeong and C.-S. Han: Adv. Mater., 23 (2011) 911. https://doi.org/10.1002/adma.201002979
  8. H. V. Demir, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik and A. Eychmuller: Nano Today, 6 (2011) 632. https://doi.org/10.1016/j.nantod.2011.10.006
  9. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim and Y. Kim: Adv. Mater., 22 (2010) 3076. https://doi.org/10.1002/adma.201000525
  10. A. J. Nozik and J. Miller: Chem. Rev., 110 (2010) 6443. https://doi.org/10.1021/cr1003419
  11. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat: J. Am. Chem. Soc., 130 (2008) 4007. https://doi.org/10.1021/ja0782706
  12. A. V. Malko, Y.-S. Park, S. Sampat, C. Galland, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov and H. Htoon: Nano Lett., 11 (2011) 5213. https://doi.org/10.1021/nl2025272
  13. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler and M. G. Bawendi: Science, 290 (2000) 314. https://doi.org/10.1126/science.290.5490.314
  14. E. R. Smith, J. M. Luther and J. C. Johnson: Nano Lett., 11 (2011) 4923. https://doi.org/10.1021/nl202869z
  15. P. M. Allen, W. Liu, V. P. Chauhan, J. Lee, A. Y. Ting, D. Fukumura, R. K. Jain and M. G. Bawendi: J. Am. Chem. Soc., 132 (2009) 470.
  16. L. M. Maestro, E. M. Rodriguez, F. S. Rodríguez, M. C. I. Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco and J. G. Sole: Nano Lett., 10 (2010) 5109. https://doi.org/10.1021/nl1036098
  17. F. Pinaud, D. King, H.-P. Moore and S. Weiss: J. Am. Chem. Soc., 126 (2004) 6115. https://doi.org/10.1021/ja031691c
  18. A. K. Gooding, D. E. Gomez and P. Mulvaney: ACS Nano, 2 (2008) 669. https://doi.org/10.1021/nn7003469
  19. W. K. Bae, K. Char, H. Hur and S. Lee: Chem. Mater., 20 (2008) 531. https://doi.org/10.1021/cm070754d
  20. B. J. Beberwyck and A. P. Alivisatos: J. Am. Chem. Soc., 134 (2012) 19977. https://doi.org/10.1021/ja309416c
  21. C. G. Lee, Y. Nakamura, H. Nakamura, M. Uehara and H. Maeda: Epitoanyag, 3-4 (2011) 52.
  22. A. M. Nightingale and J. C. de Mello: J. Mater. Chem., 20 (2010) 8454. https://doi.org/10.1039/c0jm01221a
  23. H. Nakamura, A. Tashiro, Y. Yamaguchi, M. Miyazaki, T. Watari, H. Shimizua and H. Maeda: Lab Chip, 4 (2004) 237. https://doi.org/10.1039/b310915a
  24. W. W. Yu, L. Qu, W. Guo and X. Peng: Chem. Mater., 15 (2003) 2854. https://doi.org/10.1021/cm034081k