DOI QR코드

DOI QR Code

Controlling the Heat Generation Capability of Iron Oxide-Base Nanoparticles

산화철 나노 입자의 발열 효과의 제어

  • Choi, Jin-sil (Department of Chemical and Biological Engineering, Hanbat National University)
  • 최진실 (한밭대학교 화학생명공학과)
  • Received : 2021.11.10
  • Accepted : 2021.12.11
  • Published : 2021.12.28

Abstract

This review summarizes the recent progress in iron-oxide-based heat generators. Cancer treatment using magnetic nanoparticles as a heat generator, termed magnetic fluid hyperthermia, is a promising noninvasive approach that has gained significant interest. Most previous studies on improving the hyperthermia effect have focused on the construction of dopant-containing iron oxides. However, their applications in a clinical application can be limited due to extra dopants, and pure iron oxide is the only inorganic material approved by the Food and Drug Administration (FDA). Several factors that influence the heat generation capability of iron-oxide-based nanoparticles are summarized by reviewing recent studies on hyperthermia agents. Thus, our paper will provide the guideline for developing pure iron oxide-based heat generators with high heat dissipation capabilities.

Keywords

Acknowledgement

연구는 한국분말야금학회의 '고성능 고부가가치 미래자성소재연구회' 사업과 과학재단 연구사업(2020R1C1C1011863) 의 지원으로 수행되었습니다.

References

  1. I. R.-Rodriguez, A. S.-Otero, S. Spassov, E. Tombacz, C. Johansson, P. D. L. Presa, F. J. Teran, M. P. Morales, S. V.-Verdaguer, N. T. K. Thanh, M. O. Besenhard, C. Wilhelm, F. Gazeau, Q. Harmer, E. Mayes, B. B. Manshian, S. J. Soenen, Y. Gu, A. Millan, E. K. Efthimiadou, J. Gaudet, P. Goodwill, J. Mansfield, U. Steinhoff, J. Wells, F. Weikhorst and D. Orteag: Materials, 14 (2021) 706. https://doi.org/10.3390/ma14040706
  2. B. Thiesen and A. Jordan: Int. J. Hyperthermia, 24 (2008) 467. https://doi.org/10.1080/02656730802104757
  3. I. Craciunescu, P. Palade, N. Iacob, G. M. Ispas, A. E. Stanciu, V. Kuncser and R. P. Turcu: J. Phys. Chem. C, 125 (2021) 11132. https://doi.org/10.1021/acs.jpcc.1c01053
  4. N. Silvestri, H. Gavilan, P. Guardia, R. Brescia, S. Fernandes, A. C. S. Samia, F. J. Teran and T. Pellegrino: Nanoscale, 13 (2021) 13665. https://doi.org/10.1039/D1NR01044A
  5. S. Noh, S. H. Moon, T.-H. Shin, Y. Lim and J. Cheon: Nano Today, 13 (2017) 61. https://doi.org/10.1016/j.nantod.2017.02.006
  6. S.-H. Noh, W. Na, J.-T. Jang, J.-H. Lee, E. J. Lee, S.-H. Moon, Y. Lim, J.-S. Shin and J. Cheon: Nano Lett., 6 (2012) 3716.
  7. J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K.-I. Park and J. Cheon: Nat. Nanotech., 6 (2011) 418. https://doi.org/10.1038/nnano.2011.95
  8. R. Weissleder, D. D. Stark, B. L. Engelstad, B. R. Bacon, C. C. Compton, D. L. White, P. Jacobs and J. Lewis: Am. J. Roentgenol., 152 (1989) 167. https://doi.org/10.2214/ajr.152.1.167
  9. E. Y. Suriyanto, K. Ng and S. D. Kumar: BioMed. Eng. OnLine, 16 (2017) 36. https://doi.org/10.1186/s12938-017-0327-x
  10. S. Dutz and R. Hergt: Int. J. Hyperthermia, 29 (2013) 790. https://doi.org/10.3109/02656736.2013.822993
  11. A. E. Deatsch and B. A. Evans: J. Magn. Magn. Mater., 354 (2014) 163. https://doi.org/10.1016/j.jmmm.2013.11.006
  12. K. Jiang, Q. Zhang, D. T. Hinojosa, L. Zhang, Z. Xiao, Y. Yin, S. Tong, V. L. Colvin and G. Bao: Appl. Phys. Rev., 8 (2021) 031407. https://doi.org/10.1063/5.0042478
  13. S. Jonak and J. P. Borah: Mater. Today Commun., 26 (2021) 101789. https://doi.org/10.1016/j.mtcomm.2020.101789
  14. P. Lemal, S. B. C. Geers, P. T.-Blanco, A. Palumbo, A. M. Hirt, B. R.-Rutishauser and A. P.-Fink: J. Magn. Magn. Mater., 474 (2019) 637. https://doi.org/10.1016/j.jmmm.2018.10.009
  15. Y. Gu, M. Yoshikiyo, A. Namai, D. Bonvin, A. Martinez, R. Pinol, P. Tellez, N. J. O. Silva, F. Ahrentorp, C. Johansson, J. M.-Brualla, R. M.-Loshuertos, P. F.-Silva, Y. Cui, S. Ohkoshi and A. Millan: RSC Adv., 10 (2020) 28786. https://doi.org/10.1039/d0ra04361c
  16. H. C. Davis, S. Kang, J.-H. Lee, T.-H. Shin, H. Putterman, J. Choen and M. G. Shapiro: Biophys. J., 118 (2020) 1502. https://doi.org/10.1016/j.bpj.2020.01.028
  17. J. G. Ovejero, I. Armenia, D. Serantes, S. V.-Verdaguer, N. Zeballos, F. L.-Gallego, C. Gruttner, J. M. de la Fuente, M. D. P. Morales and V. Grazu: Nano Lett., 21 (2021) 7213. https://doi.org/10.1021/acs.nanolett.1c02178
  18. C. Iacovita, I. Fizesan, A. Pop, L. Scorus, R. Dudric, G. Stiufiuc, N. Vedeanu, R. Tetean, F. Loghin, R. Stiufiuc and C. M. Lucaciu: Pharmaceutics, 12 (2020) 424. https://doi.org/10.3390/pharmaceutics12050424
  19. C. J. Perecin, B. M. Tirich, L. C. C. M. Magamine, G. Porto, F. V. Rocha, N. N. P. Cerize and L. C. Varanda: Colloids Surf. A Physicochem. Eng. Asp., 627 (2021) 127169. https://doi.org/10.1016/j.colsurfa.2021.127169
  20. S. Tong, C. A. Quinto, L. Zhang, P. Mohindra and G. Bao: ACS Nano, 11 (2017) 6808. https://doi.org/10.1021/acsnano.7b01762
  21. R. Ferrero, G. Barrera, F. Celegato, M. Vicentini, H. Sozeri, N. Yildiz, C. A. Dincer, M. Coisson, A. Manzin and P. Tiberto: Nanomaterials, 11 (2021) 2179. https://doi.org/10.3390/nano11092179
  22. K. Habra, S. E. B. McArdle, R. H. Morris and G. W. V. Cave: Nanomaterials, 11 (2021) 2157. https://doi.org/10.3390/nano11092157
  23. J. Zhenga, C. Baib, H. Penga, L. Zhaob and H. Xionga: J. Magn. Magn. Mater., 497 (2020) 166012. https://doi.org/10.1016/j.jmmm.2019.166012
  24. J. Mohapatra, M. Xing, J. Beatty, J. Elkins, T. Seda, S. R. Mishra and J. P. Liu: Nanotechnology, 31 (2020) 275706. https://doi.org/10.1088/1361-6528/ab84a3
  25. Y.-J. Liang, L. Zhang, M. Chen, L. Fan, W. Liao, Y. Xun, L. Fu, J. Liu, F. Liu and A. Yang: AIP Advances, 10 (2020) 085208. https://doi.org/10.1063/5.0013782
  26. J. Bao, S. Guo, X. Zu, Y. Zhuang, D. Fan, Y. Zhang, Y. Shi, Z. Ji, J. Cheng and X. Pang: Front. Bioeng. Biotechnol., 9 (2021) 721617. https://doi.org/10.3389/fbioe.2021.721617
  27. R. Das, C. Witanachchi, Z. Nemati, V. Kalappattil, I. Rodrigo, J. A. Garcia, E. Garaio, J. Alonso, V. D. Lam, A.-T. Le, M.-H. Phan and H. Srikanth: Appl. Sci., 10 (2020) 787. https://doi.org/10.3390/app10030787
  28. G. Niraula, J. A. H. Coaquira, G. Zoppellaro, B. M. G. Villar, F. Garcia, A. F. Bakuzis, J. P. F. Longo, M. C. Rodrigues, D. Muraca, A. I. Ayesh, F. S. M. Sinfronio, A. S. de Menezes, G. F. Goya and S. K. Sharma: ACS Appl. Nano Mater., 4 (2021) 3148. https://doi.org/10.1021/acsanm.1c00311
  29. R. Das, J. A. Masa, V. Kalappattil, Z. Nemati, I. Rodrigo, E. Garaio, J. A. Garcia, M.-H. Phan and H. Srikanth: Nanomaterials, 11 (2021) 1380. https://doi.org/10.3390/nano11061380
  30. H.-T. Wang, P.-C. Chou, P.-H. Wu, C.-M. Lee, K.-H. Fan, W.-J. Chang, S.-Y. Lee and H.-M. Huang: Polymers, 12 (2020) 1094. https://doi.org/10.3390/polym12051094
  31. A. Rajan and N. K. Sahu: ACS Appl. Nano Mater., 4 (2021) 4642. https://doi.org/10.1021/acsanm.1c00274
  32. M. Jamir, R. Islam, L. M. Pandey and J. P. Borah: J. Alloys Compd., 854 (2021) 157248. https://doi.org/10.1016/j.jallcom.2020.157248
  33. A. Skumiel, K. Kaczmarek, D. Flak, M. Rajnak and H. Brzakala: J. Mol. Liq., 304 (2020) 112734. https://doi.org/10.1016/j.molliq.2020.112734
  34. S. Ranoo, B. B. Lahiri and J. Philip: J. Magn. Magn. Mater., 498 (2020) 166138. https://doi.org/10.1016/j.jmmm.2019.166138
  35. E. Myrovali, K. Papadopoulos, I. Iglesias, M. Spasova, M. Farle, U. Wiedwald and M. Angelakeris: ACS Appl. Mater. Interfaces, 13 (2021) 21602. https://doi.org/10.1021/acsami.1c01820
  36. L. Storozhuk, M. O. Besenhard, S. Mourdikoudis, A. P. LaGrow, M. R. Lees, L. D. Tung, A. Gavriilidis and N. T. Ki. Thanh: ACS Appl. Mater. Interfaces, 13 (2021) 45870. https://doi.org/10.1021/acsami.1c12323
  37. E. M. Jefremovas, L. Gandarias, I. Rodrigo, L. Marcano, C. Gruttner, J. A. Garcia, E. Garayo, I. Orue, A. G.-Prieto, A. Muela, M. L. F.-Gubieda, J. Alonso and L. F. Barquin: IEEE Access, 9 (2021) 99552. https://doi.org/10.1109/ACCESS.2021.3096740
  38. M. Cohen-Erner, R. Khandadash, R. Hof, O. Shalev, A. Antebi, A. Cyjon, D. Kanakov, A. Nyska, G. Goss, J. Hilton and D. Peer: ACS Appl. Nano Mater., 4 (2021) 11187. https://doi.org/10.1021/acsanm.1c02676
  39. C. Koo, H. Hong, P. W. Im, H. Kim, C. Lee, X. Jin, B. Yan, W. Lee, H.-J. Im, S. H. Paek and Y. Piao: Nano Convergence, 7 (2020) 20. https://doi.org/10.1186/s40580-020-00229-4
  40. K. Simeonidis et al.: ACS Appl. Nano Mater., 3 (2020) 4465. https://doi.org/10.1021/acsanm.0c00568
  41. A. Alkhayal, A. Fathima, A. H. Alhasan and E. H. Alsharaeh: Nanomaterials, 11 (2021) 2398. https://doi.org/10.3390/nano11092398
  42. M. S. Dar, C. M.-Boubeta, D. Serantes, S. Ruta, O. C.- Fesenko, R. Chantrell, J. O.-Sole, L. Balcells, A. S. Kamzin, R. A. Nazipov, A. Makridis and M. Angelakeris: RSC Adv. 11 (2021) 21702. https://doi.org/10.1039/D1RA03428F
  43. P.-Y. Hu, Y.-T. Zhao, J. Zhang, S.-X. Yu, J.-S. Yan, X.-X. Wang, M.-Z. Hu, H..-F. Xiang and Y.-Z. Long: Mater. Sci. Eng. C, 110 (2020) 110708. https://doi.org/10.1016/j.msec.2020.110708
  44. J.-S. Lee and S. H. Kim: IEEE Access, 9 (2021) 77009. https://doi.org/10.1109/ACCESS.2021.3081151
  45. G. Covarrubias, M. E. Lorkowski, H. M. Sims, G. Loutrianakis, A. Rahmy, A. Cha, E. Abenojar, S. Wickramasinghe, T. J. Moon, A. C. S. Samiac and E. Karathanasis: Nanoscale Adv., 3 (2021) 5890. https://doi.org/10.1039/D1NA00116G
  46. C. Hu, T.-R. Su, T.-J. Lin, C.-W. Chang and K.-L. Tung: New J. Chem., 42 (2018) 3999. https://doi.org/10.1039/C7NJ03337K
  47. B. Chen, R. Zhang, H. Wu, M. Li, G. Zhou and M. Ji: J. Drug Deliv. Sci. Tech., 57 (2020) 101677. https://doi.org/10.1016/j.jddst.2020.101677
  48. J. Zheng, C. Bai, H. Peng, L. Zhao and H. Xiong: J. Magn. Magn. Mater., 497 (2019) 166012.
  49. Z. Xiang, Y. Qi, Y. Lu, Z. Hu, X. Wang, W. Jia, J. Hu, J. Ji and W. Lu: J. Mater. Chem. B, 8 (2020) 8671. https://doi.org/10.1039/d0tb01021a
  50. K. Zhang, G. Li, Z. Pei, S. Zhao, A. Jing and G. Liang: Mater. Tech., 35 (2020) 863. https://doi.org/10.1080/10667857.2019.1706809