Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.5.410

Parametric Study of Selective Laser Melting Using Ti-6Al-4V Powder Bed for Concurrent Control of Volumetric Density and Surface Roughness  

Woo, Jeongmin (Department of Materials Science and Engineering, University of Central Florida)
Kim, Ji-Yoon (Department of Materials Science and Engineering, University of Central Florida)
Sohn, Yongho (Department of Materials Science and Engineering, University of Central Florida)
Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
Publication Information
Journal of Powder Materials / v.28, no.5, 2021 , pp. 410-416 More about this Journal
Abstract
Ti-6Al-4V alloy has a wide range of applications, ranging from turbine blades that require smooth surfaces for aerodynamic purposes to biomedical implants, where a certain surface roughness promotes biomedical compatibility. Therefore, it would be advantageous if the high volumetric density is maintained while controlling the surface roughness during the LPBF of Ti-6Al-4V. In this study, the volumetric energy density is varied by independently changing the laser power and scan speed to document the changes in the relative sample density and surface roughness. The results where the energy density is similar but the process parameters are different are compared. For comparable energy density but higher laser power and scan speed, the relative density remained similar at approximately 99%. However, the surface roughness varies, and the maximum increase rate is approximately 172%. To investigate the cause of the increased surface roughness, a nonlinear finite element heat transfer analysis is performed to compare the maximum temperature, cooling rate, and lifetime of the melt pool with different process parameters.
Keywords
Additive manufacturing; Laser powder bed fusion; Ti-6Al-4V; Surface roughness; Finite element analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Kodama: Rev. Sci. Instrum., 52 (1981) 1770.   DOI
2 C. Qiu, N. J. E. Adkins and M. M. Attallah: Mater. Sci. Eng., A, 578 (2013) 230.   DOI
3 K. S. Chan, M. Koike, R. L. Mason and T. Okabe: Metall. Mater. Trans. A, 44 (2013) 1010.   DOI
4 S. Yue, R. M. Pillar and G. C. Weatherly: J. Biomed. Mater. Res., 18 (1984) 1043.   DOI
5 P. Edwards and M. Ramulu: Mater. Sci. Eng., A, 598 (2014) 327.   DOI
6 D. Greitemeier, C. D. Donne, F. Syassen, J. Eufinger and T. Melz: Mater. Sci. Technol., 32 (2016) 629.   DOI
7 A. M. Khorasani, I. Gibson and A. R. Ghaderi: Int. J. Adv. Manuf. Technol., 97 (2018) 3761.   DOI
8 M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M.-H. Nadal, B. Wilthan and G. Pottlacher: Int. J. Thermophys., 27 (2006) 507.   DOI
9 M. Nakatani, H. Masuo, Y. Tanaka and Y. Murakami: Procedia Struct. Integrity, 19 (2019) 294.   DOI
10 C. Limmaneevichitr and S. Kou: Welding J., 79 (2000) 231.
11 M. Qian, W. Xu, M. Brandt and H. P. Tang: MRS Bull., 41 (2016) 775.   DOI
12 J. M. Drezet, S. Pellerin, C. Bezencon and S. Mokadem: J. Phys. IV, 120 (2004) 299.
13 T. Vilaro, C. Colin and J. D. Bartout: Metall. Mater. Trans. A, 42 (2011) 3190.   DOI
14 ISO/ASTM 52900: (2015).
15 F. Abe, K. Osakada, M. Shiomi, K. Uematsu and M. Matsumoto: J. Mater. Process. Technol., 111 (2001) 210.   DOI
16 W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia and M. Qian: Acta Mater., 85 (2015) 74.   DOI
17 A. M. Khorasani, I. Gibson, A. Ghaderi and M. I. Mohammed: Int. J. Adv. Manuf. Technol., 101 (2018) 3183.   DOI
18 B. Vrancken, L. Thijs, J.-P. Kruth and J. V. Humbeeck: J. Alloys Compd., 541 (2012) 177.   DOI