• 제목/요약/키워드: powder application method

검색결과 300건 처리시간 0.025초

A pilot study of a new fingerprint powder application method for the reduction of health risk

  • Kim, Eun-Ji;Lee, Da-Eun;Park, Suk-Won;Seo, Kyung-Suk;Choi, Sung-Woon
    • 분석과학
    • /
    • 제32권5호
    • /
    • pp.196-209
    • /
    • 2019
  • As a traditional method to apply fingerprint powder, brush method ("dusting") can create a risk to the health of crime scene investigators due to the inhalation toxicity of harmful and fine powders. Therefore, as a new method of applying powders, we tried to evaluate the potential of a chamber method for the development of latent fingerprint using fans in a closed chamber with a fixed capacity that can prevent the powders from being blown outside and exposed to the users, by comparing with the development results of the conventional brush method. Fingerprints on glass and plastic (PET) were extracted with black powder and green fluorescent powder, and the sharpness and minutiae of the developed fingerprints were compared for each method. The results of the black powder showed similar results, but the effect of the chamber method was slightly decreased when the green fluorescent powder was used. In order to improve the development with the green fluorescent powder, the mixture (50 : 50) of the fluorescent powder with the silica gel was tested and the results were similar to those of the brush method. It is expected that the chamber method has a high potential as a new powder application method considering the health of the crime scene investigator after fine tuning of development conditions with additional studies.

골재 채움율과 잔골재 용적비를 고려한 자기충전형 콘크리트의 최적배합 (Optimum Mixture Proportion of Self-Compacting Concrete Considering Packing Factor of Aggregate and Fine Aggregate Volume Ratio)

  • 최연왕;정문영;정지승;문대중;안성일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.549-554
    • /
    • 2002
  • In Powder System, SCC demands high dosage of superplasticizer and a lage amout of powder for suitable fluidity and viscosity. Okamura's method of most representative mixing design method in SCC of Powder-System is unfavorable economically because of using a large amount of powder. In addition, many ready-mixed concrete plants do not use his mix design method and procedure due to complexity for practical application. Therefore, Nan Su proposed more simple mix design method than Okamura's. It had an advantage in simplicity in practical application and required a smaller amount of powders compared with Okamura's method. This paper proposed an optimal mixture proportion of SCC with consideration of Nan Su's method. The new and modified mix design method required a smaller amount of powder than that of Nan Su's. To check the properties of SCC, considered with the requirements specified by the Japanese Society of Civil Engineering.(JSCE)

  • PDF

분말사출성형에 의한 WC-Co 계 milling insert 제조 (WC-Co Milling Inserts Manufactured by Powder Injection Molding)

  • 성환진
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.88-95
    • /
    • 1999
  • The purpose of this study is to investigate the manufacturing feasibility of WC-Co milling inserts via Powder Injection Molding (PIM) process. WC-Co is used in a wide variety of cutting tools due to its high hardness, stiffness, compressive strength and wear resistance properties. WC-Co parts for a high stress application were conventionally produced by the press and sinter method, which were Iimited to 2 dimensional shapes. Manufacturing WC-Co parts for a high stress application by PIM implies that tool efficiency can be highly improved due to increased freedom is design. P30 grade WC powder (WC-Co-TiC-TaC system) was mixed with RIST-5B133 binder and injection molded into milling inserts (Taegu Tech. Model WCMX 06T 308). The mean grain size of the powder was about 0.8$\mu$m. Injection molded specimens were debound by solvent extraction and thermal degradation method at various conditions. The specimens were sintered at 140$0^{\circ}C$ for 1 hr in vacuum. Carbon content, weight loss, dimensional change, and macro defects of the specimen were carefully monitored at each stage of the PIM process. PIMed WC-Co milling inserts reached 100% full density after sinteing. Its mechanical properties and micro-structures were comparable with the press and sintered milling insert. Carbon content of the sintered WC-Co insert was mainly determained by the atmosphere of thermal debinding. By controlling powder loading and injection molding condition, dimensional accuracy could be obtained within 0.4%. We confirm that PIM can not only be an alternative manufacturing method for WC-Co parts economically but also provide a design freedom for more effieient cutting tools.

  • PDF

다수의 인조피부를 이용한 파우더 고유색 측정 및 도포 패턴 표현이 가능한 메이크업 시뮬레이션 (Estimation of Color Translucency of Powder Coating using Multiple Artificial Skins and its Application to Makeup Simulation with Thickness Patterns)

  • 김명준
    • 한국정보통신학회논문지
    • /
    • 제19권8호
    • /
    • pp.1859-1866
    • /
    • 2015
  • 본 논문은 파우더 메이크업 효과를 시뮬레이션 하는 새로운 방법을 제안한다. 간단하면서도 사실적인 색상을 표현할 수 있는 색상 발현 모델을 고안하고, 여러 색상의 인조스킨에 파우더를 도포한 사진 이미지 분석에 색상모델을 적용하여 파우더 고유의 투과색 및 도포 두께를 추출하였다. 또한, 실제 사람 피부에 도포된 파우더 도포 두께 패턴을 추출하고 이를 다른 사람의 사진 상에서 메이크업 시뮬레이션 하는 데 사용하여 파우더의 질감을 실감 있게 표현하였다. 실험 결과 제안된 메이크업 시뮬레이션은 사실적인 색감과 질감을 나타낸 것으로 평가되었으며, 파우더 색상을 가상으로 테스트 하는 데 사용할 수 있을 것으로 기대한다.

황 시용 형태 및 시용량이 홍화의 생육 및 수량에 미치는 영향 (Effects of Type and Amounts of Sulfur Fertilizer on Growth and Seed Yield of Safflower)

  • 김민자;김인재;남상영;이철희;송범헌
    • 한국작물학회지
    • /
    • 제49권6호
    • /
    • pp.503-506
    • /
    • 2004
  • 홍화 재배시 비효면에서 효과적인 황 시용방법을 구명하고자 황분말 20 kg/10a와 유안의 시용방법 및 시용량을 달리하여 생육 및 수량에 미치는 영향을 비교 조사한 결과는 다음과 같다. 1. 황 유형 및 시용 정도에 따른 생육은 황 시용시 무시용에 비하여 초장이 큰 경향이었으며, 경태와 경엽중이 굵거나 무거웠고, 황 유형간에는 황분말 보다는 유안 처리시 양호한 경향이었다. 2. 황을 시용함으로써 화두수 등 수량구성요소가 전반적으로 증가하는 경향을 보였고, 종실 수량이 $4-10\%$ 증수되었다. 황 유형간에는 황분말보다는 유안이 효과적이었으며, 유안 시비방법 간에는 엽면시비 8.3kg/10a과 토양시비 $33.0\~49.5kg/10a$ 시용구와 차이가 미미하였다.

Atom Probe Tomography: A Characterization Method for Three-dimensional Elemental Mapping at the Atomic Scale

  • Choi, Pyuck-Pa;Povstugar, Ivan
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.67-71
    • /
    • 2012
  • The present paper gives an overview about the Atom Probe Tomography technique and its application to powder materials. The preparation of needle-shaped Atom Probe specimens from a single powder particle using focused-ion-beam milling is described. Selected experimental data on mechanically alloyed (and sintered) powder materials are presented, giving insight into the atomic-scale elemental redistribution occurring under powder metallurgical processing.

이산요소법을 이용한 Graphite 분말 압축 특성 연구 (A Study on Graphite Powder Compaction Behaviors Using the Discrete Element Method)

  • 정준혁;최진일
    • 한국분말재료학회지
    • /
    • 제28권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Accurate and effective powder compaction analyses are performed for brittle materials such as graphite, utilized as a solid lubricant, by using the discrete element method (DEM). The reliability of the DEM analysis is confirmed by comparing the results of graphite powder compaction analyses using the DEM particle bonding contact model and particle non-bonding contact model with those from the powder compaction experiment under the same conditions. To improve the characteristics, the parameters influencing the compaction properties of the metal-graphite mixtures are explored. The compressibility increases as the size distribution of the graphite powder increases, where the shape of the graphite particles is uniform. The improved compaction characteristics of the metal-graphite (bonding model) mixtures are further verified by the stress transmission and compressive force distribution between the top and bottom punches. It is confirmed that the application of graphite (bonding model) powders resulted in improved stress transmission and compressive force distribution of 24% and 85%, respectively.

그래핀 원스텝 전사(Graphene One-Step Transfer) 공정 기반 다층 그래핀 잔여분말 제거 기술 연구 (A Study on Residual Powder Removing Technique of Multi-Layered Graphene Based on Graphene One-Step Transfer Process)

  • 우채영;조영수;홍순규;이형우
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.11-15
    • /
    • 2019
  • In this study, a method to remove residual powder on a multi-layered graphene and a new approach to transfer multi-layered graphene at once are studied. A graphene one-step transfer (GOST) method is conducted to minimize the residual powder comparison with a layer-by-layer transfer. Furthermore, a residual powder removing process is investigated to remove residual powder at the top of a multi-layered graphene. After residual powder is removed, the sheet resistance of graphene is decreased from 393 to 340 Ohm/sq in a four-layered graphene. In addition, transmittance slightly increases after residual powder is removed from the top of the multi-layered graphene. Optical and atomic-force microscopy images are used to analyze the graphene surface, and the Ra value is reduced from 5.2 to 3.7 nm following residual powder removal. Therefore, GOST and residual powder removal resolve the limited application of graphene electrodes due to residual powder.

The Characterization of the Resin Bonded Graphite Composite Bipolar Plate using Isotropic Graphite Powder for PEM Fuel Cell

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Hui, Seung-Hun;Kim, Hong-Suk;Chung, Yoon-Jung;Lim, Yun-Soo
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.326-334
    • /
    • 2007
  • In this study, graphite composites were fabricated by warm press molding method to realize commercialization of PEM fuel cells. Graphite composites have been considered as alternative economic materials for bipolar plate of PEM fuel cells. Graphite powder that enables to provide electrical conductivity was selected as the main substance. The graphite powder was mixed with phenolic resin and the mixture was pressed using a warm press method. First of all, the graphite powder was pulverized with a ball mill for the dense packing of composite. As the ball milling time increases, the average size of particles decreases and the size distribution becomes narrow. This allows for improvement of the uniformity of graphite composite. However, the surface electrical resistivity of graphite composite increases as the ball milling time increases. It is due to that graphite particles with amorphous phase are generated on the surface due to the friction and collision of particles during pulverizing. We found that the contact electrical resistivity of graphite particles increases as the particle size decreases. The contact electrical resistivity of graphite powders was reduced due to high molding pressure by warm press molding. This leads to improvement of the mechanical properties of graphite composite. Hydrogen gas impermeability was measured with the graphite composite, showing a possibility of the application for bipolar plate in fuel cell. And, I-V curves of the graphite composite bipolar plate exhibit a similar performance to the graphite bipolar plate.

PVA 용액법을 통한 나노 Cu 분말합성 및 소결체의 열적 특성 (Synthesis of Nano-Sized Cu Powder by PVA Solution Method and Thermal Characteristics of Sintered Cu Powder Compacts)

  • 오복현;마충일;이상진
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.93-98
    • /
    • 2020
  • Effective control of the heat generated from electronics and semiconductor devices requires a high thermal conductivity and a low thermal expansion coefficient appropriate for devices or modules. A method of reducing the thermal expansion coefficient of Cu has been suggested wherein a ceramic filler having a low thermal expansion coefficient is applied to Cu, which has high thermal conductivity. In this study, using pressureless sintering rather than costly pressure sintering, a polymer solution synthesis method was used to make nano-sized Cu powder for application to Cu matrix with an AlN filler. Due to the low sinterability, the sintered Cu prepared from commercial Cu powder included large pores inside the sintered bodies. A sintered Cu body with Zn, as a liquid phase sintering agent, was prepared by the polymer solution synthesis method for exclusion of pores, which affect thermal conductivity and thermal expansion. The pressureless sintered Cu bodies including Zn showed higher thermal conductivity (180 W/m·K) and lower thermal expansion coefficient (15.8×10-6/℃) than did the monolithic synthesized Cu sintered body.