Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.1.11

A Study on Residual Powder Removing Technique of Multi-Layered Graphene Based on Graphene One-Step Transfer Process  

Woo, Chae-young (Department of Nano Fusion Technology, Pusan National University)
Jo, Yeongsu (Research Center of Energy Convergence Technology, Pusan National University)
Hong, Soon-kyu (Department of Nano Fusion Technology, Pusan National University)
Lee, Hyung Woo (Department of Nano Fusion Technology, Pusan National University)
Publication Information
Journal of Powder Materials / v.26, no.1, 2019 , pp. 11-15 More about this Journal
Abstract
In this study, a method to remove residual powder on a multi-layered graphene and a new approach to transfer multi-layered graphene at once are studied. A graphene one-step transfer (GOST) method is conducted to minimize the residual powder comparison with a layer-by-layer transfer. Furthermore, a residual powder removing process is investigated to remove residual powder at the top of a multi-layered graphene. After residual powder is removed, the sheet resistance of graphene is decreased from 393 to 340 Ohm/sq in a four-layered graphene. In addition, transmittance slightly increases after residual powder is removed from the top of the multi-layered graphene. Optical and atomic-force microscopy images are used to analyze the graphene surface, and the Ra value is reduced from 5.2 to 3.7 nm following residual powder removal. Therefore, GOST and residual powder removal resolve the limited application of graphene electrodes due to residual powder.
Keywords
residual powder; removing; graphene; one-step transfer; sheet resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. K. Hong and H. W. Lee: J. Korean Powder Metall. Inst., 24 (2017) 248.   DOI
2 A. K. Geim: Science, 324 (2009) 1530.   DOI
3 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff: Science, 324 (2009) 1312.   DOI
4 Z. S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang and H. M. Cheng: ACS Nano, 3 (2009) 411.   DOI
5 X. Liu, C. Z. Wang, M. Hupalo, H. Q. Lin, K. M. Ho and M. C. Tringides: Crystals, 3 (2013) 79.   DOI
6 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong: Nature, 457 (2009) 706.   DOI
7 F. Xia, D. B. Farmer, Y. M. Lin and P. Avouris: Nano Lett., 10 (2010) 715.   DOI
8 P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim: Appl. Phys. Lett., 91 (2007) 91.
9 D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace: Nature Nanotech., 3 (2008) 101.   DOI
10 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong: Nano Lett., 9 (2009) 30.   DOI
11 P. R. Kidambi, B. C. Bayer, R. Blume, Z. J. Wang, C. Baehtz, R. S. Weatherup, M. G. Willinger, R. Schloegl and S. Hofmann: Nano Lett., 13 (2013) 4769.   DOI
12 J. Kang, D. Shin, S. Bae and B. H. Hong: Nanoscale, 4 (2012) 5527.   DOI
13 B. H. Son, H. S. Kim, H. Jeong, J. Y. Park, S. Lee and Y. H. Ahn: Sci. Rep., 7 (2017) 18058.   DOI
14 H. Park, P. R. Brown, V. Bulovic, and J. Kong: Nano Lett., 12 (2012) 133.   DOI
15 T. Uwanno, Y. Hattori, T. Taniguchi, K. Watanabe and K. Nagashio: 2D Materials, 2 (2015) 1.   DOI
16 M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito: Nano Lett., 10 (2010) 751.   DOI
17 F. M. Smits: Bell System Technical Journal, 37 (1958) 711.   DOI
18 L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus: Phys. Rep., 473 (2009) 51.   DOI