• Title/Summary/Keyword: powder X-ray diffraction

Search Result 1,001, Processing Time 0.026 seconds

Synthesis and Magnetic Properties of Nano-sized Mn Ferrite Powder and Film

  • Kwon, Woo-Hyun;Lee, Jae-Gwang;Lee, Young-Bae;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.27-30
    • /
    • 2011
  • Nano-sized manganese ferrite powders and films, $MnFe_2O_4$, were fabricated by the sol-gel method, and the effects of annealing temperature on the crystallographic and magnetic properties were studied by using X-ray diffractometry, field emission scanning electron microscopy, M$\"{o}$ssbauer spectroscopy, and vibrating sample magnetometry. X-ray diffraction spectroscopy of powder samples annealed above 523 K indicated the presence of spinel structure, and the film samples annealed above 773 K also had spinel structure. The particle size increased with the annealing temperature. For the powder samples, the Mossbauer spectra annealed above 573 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of $Fe^{3+}$ ions. Using the M$\"{o}$ssbauer subspectrum area ratio the cation distribution could be written as ($Mn_{0.52}Fe_{0.48}$) $[Mn_{0.48}Fe_{1.52}]$ $O_4$. However the spectrum annealed at 523 K only showed as a doublet due to a superparamagnetic phase. As the annealing temperature was increased, the saturation magnetization and the corecivity of the powder samples increased, as did the coercivity of film samples.

EffEct of vacuum annealing on an oxidation of milled WC-Co powder (분쇄된 초경합금 분말의 산화에 미치는 진공열처리 효과)

  • 김소나
    • Journal of Powder Materials
    • /
    • v.3 no.2
    • /
    • pp.91-96
    • /
    • 1996
  • The effect of vacuum annealing on the oxidation behavior of milled WC-15%Co powder mixture has been studied. A cobalt component in the milled powder mixture was oxidized preferentially above 175$^{\circ}C$ in air. The specimens showed a steady increase in weight at 175$^{\circ}C$ but did constant weight followed by rapid increase in specimen weight at the beginning above 20$0^{\circ}C$. Oxidation of the milled powder mixture was significantly suppressed by vacuum annealing at 30$0^{\circ}C$ for 10 h. Suppression of oxidation by vacuum annealing and different oxidation behaviors of the milled powder mixture between 175$^{\circ}C$ and 20$0^{\circ}C$, were attributed to removal of strain energy stored in the cobalt powder during vacuum annealing or oxidation treatment above 20$0^{\circ}C$. The role of stored strain energy on oxidation of milled WC-15%Co powder mixture was proved by X-ray diffraction method and differential thermal analysis.

  • PDF

Microstructures and Repeated Usage-Properties of de-$NO_{x}$ Transition Metals/ZSM-5 Catalyst Made by Mechanical Alloying Method (기계적합금화법을 이용하여 제조된 $NO_{x}$ 제거용 천이금속/ZSM-5촉매의 미세구조 및 반복사용특성)

  • 조규봉;안인섭;남태현
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.273-278
    • /
    • 1998
  • $De-NO_x$ transition metals(Cu, Co)/ZSM-5 catalyst was made by mechanical alloying method, and their microstructures and repeated usage-properties were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The conversions ability of NO in the catalyst was measured. A part of ZSM-5 in CO/ZSM-5 composite powders was amorphous and the amorphous phase became less stable with increasing Co content. Conversion ability of NO in 10Cu/ZSM-5 powders decreased from 89% to 12% and that in 10Co/ZSM-5 decreased from 22% to 17% by 7 times conversion tests.

  • PDF

A Combined Rietveld Refinement on the Crystal Structure of a Magnetoelectric Aurivillius Phase $Bi_5Ti_3FeO_{15}$ Using Neutron and X-ray Powder Diffractions

  • Ko, Tae-Gyung;Jun, Chang-Ho;Lee, Jeong-Soo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.341-347
    • /
    • 1999
  • An ambiguity on the correct room temperature structure of $Bi_5Ti_3FeO_{15}$ was resolved using a combined Rietveld refinement of neutron and X-ray diffraction. The structure of this compound has been reported to have a space group of F2mm (adopting 2-fold rotation symmetry along the c-axis) or A21am. However, our diffraction, study reveals that some reflections would violate F-centering and confirm that the belong to $A2_1$am. Out refinement with the space group of $A2_1$am converged at $R_p=6.85%, R_wp=9.23%$ and $\chi^2$=1.66 for an isotropic temperature model with 85 variables. The lattice constants are a=5.4677(1) $\AA$, b=5.4396(1) $\AA$, and c=41.2475(8)$\AA$. In structure, Ti/Fe atoms at the oxygen octahedral sites of the perovskite unit are completely disordered, resulting in that these atoms are transparent in neutron diffraction. The octahedra of the perovskite unit are relatively displaced along the a-axis against the Bi atoms, which contribute as a major component to the spontaneous polarization of $Bi_5Ti_3FeO_{15}$.

  • PDF

A Study on the Cementation Reaction of Copper-containing Waste Etching Solution to the Shape of Iron Samples (철 샘플에 따른 구리 함유 폐에칭액의 시멘테이션 반응에 대한 연구)

  • Kim, Bo-Ram;Jang, Dae-Hwan;Kim, Dae-Weon
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.240-246
    • /
    • 2021
  • The waste etching solution for chip on film (COF) contained about 3.5% copper, and it was recovered through cementation using iron samples. The effect of cementation with plate, chip, and powder iron samples was investigated. The molar ratio (m/r) of iron to copper was used as a variable in order to increase the recovery rate of copper. As the molar ratio increased, the copper content in the solution rapidly decreased at the beginning of the cementation reaction. Before and after the reaction, the copper content of the solution was determined by Inductively Coupled Plasma (ICP) using copper concentration according to time. After cementation at room temperature for 1 hour, the recovery rate of copper had increased the most in the iron powder sample, having the largest specific surface area of the samples, followed by the chip and plate samples. The recovered copper powder was characterized for its crystalline phase, morphology, and elemental composition by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDS), respectively. Copper and unreacted iron were present together in the iron powder samples. The optimum condition for recovering copper was obtained using iron chips with a molar ratio of iron to copper of 4 giving a recovery rate of about 98.4%.

Effect of dehydride atmosphere on Hydrogen concentration of Tantalum (탈수소화 분위기가 탄탈륨 분말 수소농도에 미치는 영향 연구)

  • Lee, Ji-eun;Yoon, Jin-Ho;Lee, Chan Gi
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • Hydride-dehydride process for efficient recycling of tantalum (Ta) is used for manufacturer of Ta powder. In case of metal powder, Impurities as like nitride, oxygen, hydrogen is decreased of physical properties. For manufacture of Ta powder, control of theses impurities is important. In this study, to decreased of impurities on Ta powder using HDH process optimize dehydride condition. Dehydration behavior of Ta is depended on temperature, time, and atmosphere. Phase transition of Ta hydride is analyzed by X-ray diffraction (XRD). Concentration of hydrogen is decreased with temperature increased. At high temperature, concentration of hydrogen in Ta is similar according to time increased. Size and morphology of powder is not observed after dehydride. Ta powder, which is less than 20 um, concentration of hydrogen under 800 ppm is obtain.

Powder Characteristics of $n-TiO_2$ Powder Synthesized by Chemical Vapor Synthesis (화학기상합성에 의해 제조된 $n-TiO_2$ 분말의 분말특성)

  • 김혜경
    • Journal of Powder Materials
    • /
    • v.6 no.3
    • /
    • pp.238-245
    • /
    • 1999
  • The preparation of $n-TiO_2$ powder by the Chemical Vapor Synthesis process (CVS) was studied using the liquid metal organic precursor (TTIP). The residence time and the collection methods were considered as main processing variables through the experiments. The CVS equipment consisted of a micropump and a flashvaporizer, a tube furnace and a tubular collection device. The synthesis was performed at $1000^{\circ}C$ with various sets of collection zone. The residence time and the total system pressure were controlled in the range of 3~20 ms and 10 mbar, respectively. Nitrogen adsorption, X-ray diffraction and electron microscopy were used to determine particle size, specific surface area and crystallographic structure. The grain size of the as-prepared $n-TiO_2$ powder was in the range of 2~8 nm for all synthesis parameters and the powder exhibited only little agglomeration. The relationship between particle characteristics and the processing variables is reviewed based on simple growth model.

  • PDF

Coating of Cobalt Over Tungsten Carbide Powder by Wet Chemical Reduction Method

  • Hong, Hyun-Seon;Yoon, Jin-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.93-96
    • /
    • 2014
  • Cobalt coated tungsten carbide-cobalt composite powder has been prepared through wet chemical reduction method. The cobalt sulfate solution was converted to the cobalt chloride then the cobalt hydroxide. The tungsten carbide powders were added in to the cobalt hydroxide, the cobalt hydroxide was reduced and coated over tungsten carbide powder using hypo-phosphorous acid. Both the cobalt and the tungsten carbide phase peaks were evident in the tungsten carbide-cobalt composite powder by X-ray diffraction. The average particle size measured via scanning electron microscope, particle size analysis was around 380 nm and the thickness of coated cobalt was determined to be 30~40 nm by transmission electron microscopy.

EPD Superconductor Film with Submicron YBCO on Ag Alloy

  • Soh, Dea-Wha;Fan, Zhanguo;Jeon, Yong-Woo
    • Journal of the Speleological Society of Korea
    • /
    • no.76
    • /
    • pp.49-55
    • /
    • 2006
  • The submicron $YBa_2Cu_3O_x$ powder was prepared by the sol-gel method. The particle size is distributed from 0.2 to 1.0 ${\mu}m$, which benefits to eliminate the micro-cracks formed in the $YBa_2Cu_3O_x$ films deposited by electrophoresis. The powder was single phase of $YBa_2Cu_3O_x$ examined by X-ray diffraction. In the sol-gel process the citrate gel was formed from citric acid and nitrate solution of $Y_2O_3$, $Ba(NO_3)_2$ and CuO. When pH values were adjusted to 6.4-6.7, $Ba(NO_3)_2$ could be dissolved in the citrate solution completely. Appropriate evaporative temperature of the sol-gel formation is discussed. Acetone is used as electrophoreticsolution, in which some water and iodine (0.2 g/1) and polyethylene glycol (2 vol. %) are added. The concentrations of $YBa_2Cu_3O_x$ powders is 20g/l. The thickness of deposited film could be more than 50 ${\mu}m$ in 3 minutes of depositing time. The most EPD films could be 90K zero resistance and the Jc values were over 1000A/cm2 (0 H, 77 K).